分析 (1)当p=1时,求出一元二次方程,根据根与系数之间的关系,结合两角和差的正切公式进行求解即可;
(2)根据向量数量积的定义分别求出$\overrightarrow{OM}$$•\overrightarrow{ON}$和$\overrightarrow{TM}$•$\overrightarrow{TN}$的表达式,建立方程进行求解判断即可.
解答 解:(1)当p=1时,方程等价为3x2-5x-2=0,
∵tanA,tanB是方程的两个根,
∴tanA+tanB=$\frac{5}{3}$,tanAtanB=-$\frac{2}{3}$,
则tanC=-tan(A+B)=-$\frac{tanA+tanB}{1-tanAtanB}$=-$\frac{\frac{5}{3}}{1+\frac{2}{3}}$=-1,则C=$\frac{3π}{4}$.
(2)AB2=9+2-2×$3\sqrt{2}×(-\frac{\sqrt{2}}{2})$=17,
则AB=$\sqrt{17}$,
由正弦定理得$\frac{\sqrt{2}}{sinA}=\frac{\sqrt{17}}{sin\frac{3π}{4}}$,得sinA=$\frac{\sqrt{17}}{17}$,cosA=$\frac{4\sqrt{17}}{17}$,
设CD=AD=t,则t2=9+t2-2×3t•$\frac{4\sqrt{17}}{17}$,得t=$\frac{3\sqrt{17}}{8}$.
(2)$\overrightarrow{OM}$$•\overrightarrow{ON}$=x1x2+p2x1x2+p(x1+x2)+1,
$\overrightarrow{TM}$•$\overrightarrow{TN}$=x1x2+p2x1x2,
∵x1+x2=$\frac{5p}{2{p}^{2}+1}$,x1x2=-$\frac{2}{2{p}^{2}+1}$,
∴$\overrightarrow{OM}$$•\overrightarrow{ON}$+λ$\overrightarrow{TM}$•$\overrightarrow{TN}$=(1+λ)(1+p2)x1x2+p(x1+x2)+1
=(1+λ)(1+p2)(-$\frac{2}{2{p}^{2}+1}$)+p•$\frac{5p}{2{p}^{2}+1}$+1
=$\frac{5{p}^{2}-1-2λ-2λ{p}^{2}}{2{p}^{2}+1}$=$\frac{(5-2λ){p}^{2}-(2λ+1)}{2{p}^{2}+1}$
=$\frac{(\frac{5}{2}-λ)(2{p}^{2}+1)-λ-\frac{7}{2}}{2{p}^{2}+1}$=$\frac{5}{2}$-λ-$\frac{λ+\frac{7}{2}}{2{p}^{2}+1}$,
则当λ=-$\frac{7}{2}$时,$\overrightarrow{OM}$$•\overrightarrow{ON}$+λ$\overrightarrow{TM}$•$\overrightarrow{TN}$=6为常数.
点评 本题主要考查平面向量数量积的应用以及一元二次方程根与系数的关系,考查学生的计算能力,综合性较强,运算量较大,有一定的难度.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | $-\frac{3}{5}$ | C. | $\frac{3}{5}$ | D. | $-\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3\sqrt{3}}}{4}$ | B. | $\frac{{\sqrt{3}}}{4}$ | C. | $\frac{{3\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{27}{19}$ | B. | $\frac{18}{13}$ | C. | $\frac{10}{7}$ | D. | $\frac{17}{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 广告费用x(万元) | 4 | 2 | 3 | 5 |
| 销售额y(万元) | 49 | 26 | ? | 54 |
| A. | 39万元 | B. | 38万元 | C. | 38.5万元 | D. | 39.373万元 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{10}$ | B. | -$\frac{1}{10}$ | C. | $\frac{i}{10}$ | D. | -$\frac{i}{10}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com