4£®Éèm£¬nÊDz»Í¬µÄÖ±Ïߣ¬¦Á£¬¦Â£¬¦ÃÊDz»Í¬µÄÆ½Ãæ£¬ÓÐÒÔÏÂËĸöÃüÌ⣺
¢Ù$\left.\begin{array}{l}¦Á¡Î¦Â\\ ¦Á¡Î¦Ã\end{array}\right\}⇒¦Â¡Î¦Ã$
¢Ú$\left.\begin{array}{l}¦Á¡Í¦Â\\ m¡Î¦Á\end{array}\right\}⇒m¡Í¦Â$
¢Û$\left.\begin{array}{l}m¡Í¦Á\\ m¡Î¦Â\end{array}\right\}⇒¦Á¡Í¦Â$
¢Ü$\left.\begin{array}{l}m¡În\\ n?¦Á\end{array}\right\}⇒m¡Î¦Á$
ÆäÖУ¬ÕýÈ·µÄÃüÌâÊÇ¢Ù¢Û£®

·ÖÎö ¸ù¾Ý¿Õ¼äÖ±ÏßºÍÆ½ÃæÆ½Ðлò´¹Ö±µÄÐÔÖÊ·Ö±ð½øÐÐÅжϼ´¿É£®

½â´ð ½â£º¢Ù¸ù¾ÝÃæÃæÆ½ÐеÄÐÔÖÊ£¬Í¬Ê±ºÍÒ»¸öÆ½ÃæÆ½ÐеÄÁ½¸öÆ½ÃæÊÇÆ½Ðеģ¬Ôò$\left.\begin{array}{l}¦Á¡Î¦Â\\ ¦Á¡Î¦Ã\end{array}\right\}⇒¦Â¡Î¦Ã$ÕýÈ·£¬
¢Úµ±m¡Î¦Áʱ£¬mÓë¦Â¿ÉÄÜÏཻ£¬¿ÉÄÜÆ½ÐУ¬Ò²¿ÉÄÜÔÚÆ½ÃæÄÚ£¬Ôò$\left.\begin{array}{l}¦Á¡Í¦Â\\ m¡Î¦Á\end{array}\right\}⇒m¡Í¦Â$´íÎó£¬
¢Û¸ù¾ÝÏßÃæ´¹Ö±ºÍÏßÃæÆ½ÐеÄÐÔÖʿɵÃ$\left.\begin{array}{l}m¡Í¦Á\\ m¡Î¦Â\end{array}\right\}⇒¦Á¡Í¦Â$ÕýÈ·£¬
¢Ü$\left.\begin{array}{l}m¡În\\ n?¦Á\end{array}\right\}⇒m¡Î¦Á$´íÎ󣬻¹ÓпÉÄÜÊÇm?Æ½Ãæ¦Á£¬¹Ê¢Ü´íÎó£¬
¹ÊÕýÈ·µÄÊÇ¢Ù¢Û£¬
¹Ê´ð°¸Îª£º¢Ù¢Û£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÃüÌâµÄÕæ¼ÙÅжϣ¬Éæ¼°¿Õ¼äÖ±Ïߣ¬Æ½ÃæÖ®¼äƽÐлò´¹Ö±µÄÅжϣ¬¸ù¾ÝÏàÓ¦µÄÅж¨¶¨ÀíÒÔ¼°ÐÔÖʶ¨ÀíÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÈôµÈ²îÊýÁеÄǰ6ÏîºÍΪ36£¬Ç°9ÏîºÍΪ81£¬
£¨1£©Çóan£»
£¨2£©ÇóÊýÁÐ{$\frac{1}{{a}_{n+1}{a}_{n}}$}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÍÖÔ²$\frac{y^2}{9}$+x2=1£¬¹ýµãP£¨$\frac{1}{2}$£¬$\frac{1}{2}$£©µÄÖ±ÏßÓëÍÖÔ²½»ÓÚA¡¢BÁ½µã£¬ÇÒÏÒAB±»µãPƽ·Ö£¬ÔòÖ±ÏßABµÄ·½³ÌΪ£¨¡¡¡¡£©
A£®9x+y-5=0B£®9x-y-4=0C£®2x+y-2=0D£®x+y-5=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÔÚ¼«×ø±êϵÖУ¬Ö±ÏߦÈ=$\frac{¦Ð}{6}$£¨¦Ñ¡ÊR£©±»Ô²¦Ñ=4COS¦È½ØµÃµÄÏÒ³¤Îª$2\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èçͼ£¬º¯Êý$f£¨x£©=Asin{£¨¦Øx+¦Õ£©_{\;}}£¨A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼\frac{¦Ð}{2}£©$Óë×ø±êÖáµÄÈý¸ö½»µãP£¬Q£¬RÂú×ãP£¨2£¬0£©£¬¡ÏPQR=$\frac{¦Ð}{4}$£¬MΪQRµÄÖе㣬PM=2$\sqrt{5}$£¬ÔòAµÄֵΪ-$\frac{16\sqrt{3}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Å×ÎïÏßy2=6xµÄ½¹µãµ½Ë«ÇúÏßx2-$\frac{{y}^{2}}{3}$=1µÄ½¥½üÏߵľàÀëÊÇ£¨¡¡¡¡£©
A£®$\frac{{3\sqrt{3}}}{4}$B£®$\frac{{\sqrt{3}}}{4}$C£®$\frac{{3\sqrt{3}}}{2}$D£®$\frac{{\sqrt{3}}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖª$\overrightarrow a=£¨2£¬\;1£©$£¬$\overrightarrow b=£¨1£¬\;-2£©$£¬Èô$m\overrightarrow a+n\overrightarrow b=£¨9£¬\;-8£©£¨m£¬n¡ÊR£©$£¬Ôòm-nµÄֵΪ£¨¡¡¡¡£©
A£®2B£®-2C£®3D£®-3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÔÚ¼«×ø±êϵÖУ¬ÒÑÖªÁ½µã$A£¨3£¬\frac{¦Ð}{3}£©£¬B£¨1£¬\frac{4¦Ð}{3}£©$£¬ÔòA£¬BÁ½µã¼äµÄ¾àÀëÊÇ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªf£¨x£©=$\frac{{¦Ð}^{|x|}}{x}$+x-$\frac{3}{x}$£¬Ôòy=f£¨x£©µÄÁãµã¸öÊýÊÇ£¨¡¡¡¡£©
A£®4B£®3C£®2D£®1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸