精英家教网 > 高中数学 > 题目详情
如果等比数列{an}的首项、公比之和为1且首项是公比的2倍,那么它的前n项的和为(  )
A、
1
2
(1-
1
3n
B、1-(
2
3
n
C、1-
1
3n-1
D、1-
1
3n
考点:等比数列的前n项和
专题:等差数列与等比数列
分析:由题意易得首项和公比的方程组,解方程组代入求和公式化简可得.
解答: 解:设等比数列{an}的首项、公比分别为a1和q,
则由题意可得
a1+q=1
a1=2q
,解得
a1=
2
3
q=
1
3

∴前n项的和Sn=
2
3
×(1-
1
3n
)
1-
1
3
=1-
1
3n

故选:D
点评:本题考查等比数列的求和公式,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

要造一个高与底面圆直径星等的圆柱形水桶,水桶的容积为5m3,这个水桶的底面圆半径约为多少?(π取3.14,结果精确到0.01m)

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
a2
+
y2
b2
=1的左焦点F(-
2
,0)作两条互相垂直的直线与椭圆分别相交于A、C及B、D,当直线AC与x轴垂直时,四边形ABCD的面积为4.
(Ⅰ)求椭圆标准方程;
(Ⅱ)求
|AC|2|BD|2
|AC|+|BD|
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}的前n项和为Sn,且4Sn=an2+2an,设数列{
1
an2
}的前n项和为Tn,求证:Tn
5
32

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点坐标分别为A(1,1),B(4,1),C(4,5),求cosA•cosB•cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,求证:tan
A
2
tan
B
2
+tan
B
2
tan
C
2
+tan
C
2
tan
A
2
=1.并利用其求值:tan40°tan15°+tan15°tan35°+tan35°tan40°.

查看答案和解析>>

科目:高中数学 来源: 题型:

同一坐标系下,函数y=x+a与函数y=ax的图象可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=12,|
b
|=15,|
a
+
b
|=25,则|
a
-
b
|为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

化简并作图:x=
1
t
,y=
1
t
t2-1

查看答案和解析>>

同步练习册答案