精英家教网 > 高中数学 > 题目详情
在△ABC中,求证:tan
A
2
tan
B
2
+tan
B
2
tan
C
2
+tan
C
2
tan
A
2
=1.并利用其求值:tan40°tan15°+tan15°tan35°+tan35°tan40°.
考点:两角和与差的正切函数
专题:三角函数的求值
分析:在△ABC中,A+B+C=π,逆用两角和的正切,可得(tan
B
2
+tan
C
2
)=tan(
B
2
+
C
2
)(1-tan
B
2
tan
C
2
)=cot
A
2
(1-tan
B
2
tan
C
2
),即可证得结论成立,从而可知tan40°tan15°+tan15°tan35°+tan35°tan40°的值.
解答: 解:在△ABC中,∵A+B+C=π,
∴tan
A
2
tan
B
2
+tan
B
2
tan
C
2
+tan
C
2
tan
A
2

=tan
A
2
(tan
B
2
+tan
C
2
)+tan
B
2
tan
C
2

=tan
A
2
•tan(
B
2
+
C
2
)(1-tan
B
2
tan
C
2
)+tan
B
2
tan
C
2

=tan
A
2
•cot
A
2
(1-tan
B
2
tan
C
2
)+tan
B
2
tan
C
2

=(1-tan
B
2
tan
C
2
)+tan
B
2
tan
C
2

=1.
∵40°=
80°
2
,15°=
30°
2
,35°=
70°
2
,80°+30°+70°=180°,
∴tan40°tan15°+tan15°tan35°+tan35°tan40°=1.
点评:本题考查两角和与差的正切函数,考查诱导公式与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知,函数f(x)=
1
2
x2-alnx.
(1)求f(x)的单调区间; 
(2)当a=-1且x∈(1,+∞)时,证明:f(x)<
2
3
x3-
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B是抛物线y2=4x上的两点,N(1,0),若存在实数λ,使
AB
=λ
AN
,且|AB|=
16
3
,令A(xA,yA),知xA>1,yA>0,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明4n≥n4(n为大于3的正整数).将4换成其他更大的数能否成立并讨论其规律.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果等比数列{an}的首项、公比之和为1且首项是公比的2倍,那么它的前n项的和为(  )
A、
1
2
(1-
1
3n
B、1-(
2
3
n
C、1-
1
3n-1
D、1-
1
3n

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>1,则函数y=ax与y=(a-1)x2的图象可能是下列四个选项中的(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

.
a1a2a3an
为一个n位正整数,其中a1,a2,…,an都是正整数,1≤a1≤9,0≤ai≤9(i=2,3,…,n).若对任意的正整数j(1≤j≤n),至少存在另一个正整数k(1≤k≤n),使得aj=ak,则称这个数为“n位重复数”.根据上述定义,“四位重复数”的个数为.
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=5x,x∈(-2,4)是奇函数.
 
(判断对错).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A是抛物线x2=24y上的一点,且点A到抛物线准线的距离是10,则点A的坐标为
 

查看答案和解析>>

同步练习册答案