分析 构造长方体,则长方体的外接球和四面体的外接球是相同的,由长方体的体对角线等于球的直径2R可求得2R=$\sqrt{{1}^{2}+{2}^{2}+{2}^{2}}$=3,从而求得R的值,即可求得球O的表面积.
解答
解:∵DB⊥平面ABC,AB⊥AC,且AC=1,DB=AB=2,
∴构造长方体,则长方体的外接球和四面体的外接球是相同的,
则长方体的体对角线等于球的直径2R,
则2R=$\sqrt{{1}^{2}+{2}^{2}+{2}^{2}}$=3,
∴R=$\frac{3}{2}$,
则球O的表面积为4πR2=4π×($\frac{3}{2}$)2=9π,
故答案是:9π.
点评 本题主要考查了直线与平面垂直的性质,球内接多面体,根据已知构造一个长方体是解题的关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | x=-$\frac{π}{6}$ | B. | x=$\frac{π}{6}$ | C. | x=-$\frac{π}{3}$ | D. | x=$\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,3) | B. | [2,3) | C. | (2,3) | D. | [3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 2$\sqrt{3}$ | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com