精英家教网 > 高中数学 > 题目详情
设函数
(1)求函数的最小正周期;
(2)设函数对任意,有,且当时,;求函数上的解析式。
(1),(2)

试题分析:
(1)函数的最小正周期
(2)当时,
时, 
时, 
得:函数上的解析式为
点评:研究三角函数的图象与性质一般先将解析式化简为一个三角函数,再研究函数的性质. 利用整体代换的思想求出函数的最大值和最小值是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知函数,则=________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的反函数                .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数在给定区间M上存在正数t,使得对于任意,有,且,则称为M上的t级类增函数。给出4个命题
①函数上的3级类增函数
②函数上的1级类增函数
③若函数上的级类增函数,则实数a的最小值为2
④设是定义在上的函数,且满足:1.对任意,恒有;2.对任意,恒有;3. 对任意,若函数上的t级类增函数,则实数t的取值范围为
以上命题中为真命题的是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的极值;
(2)若上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)="|x-1|" +|x-a|,.
(I)当a =4时,求不等式的解集;
(II)若恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数上是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数定义在上且,对于任意实数都有,设函数的最大值和最小值分别为,则=            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数为常数)是实数集上的奇函数,函数
在区间上是减函数.
(Ⅰ)求实数的值;
(Ⅱ)若上恒成立,求实数的最大值;
(Ⅲ)若关于的方程有且只有一个实数根,求的值.

查看答案和解析>>

同步练习册答案