精英家教网 > 高中数学 > 题目详情
3.已知M={x||x-1|≤2,x∈R},P={x|$\frac{1-x}{x+2}$≥0,x∈R},则M∩P等于[-1,1].

分析 化简集合M、P,根据交集的定义写出M∩P即可.

解答 解:M={x||x-1|≤2,x∈R}={x|-2≤x-1≤2}={x|-1≤x≤3},
P={x|$\frac{1-x}{x+2}$≥0,x∈R}={x|$\frac{x-1}{x+2}$≤0,x∈R}={x|-2<x≤1},
则M∩P={x|-1≤x≤1}=[-1,1].
故答案为:[-1,1].

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知一个正三棱锥的正视图为等腰直角三角形,其尺寸如图所示,则此正三棱锥的体积9$\sqrt{3}$,其侧视图的周长为$5\sqrt{3}+\sqrt{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\frac{1+lnx}{x}$在区间(a,a+$\frac{2}{3}$)(a>0)上不单调,则实数a的取值范围是(  )
A.(0,1)B.($\frac{2}{3}$,1)C.($\frac{1}{2}$,1)D.($\frac{1}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为$\frac{5}{7}$(结果用最简分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知正三棱柱ABC-A1B1C1的底面积为$\frac{{9\sqrt{3}}}{4}$,侧面积为36;
(1)求正三棱柱ABC-A1B1C1的体积;
(2)求异面直线A1C与AB所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若(2x2+$\frac{1}{x}$)nn∈N*的二项展开式中的第9项是常数项,则n=12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合A={1,2,4,6,8},B={x|x=2k,k∈A},则A∩B={2,4,8}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点M(2,0),且右焦点为F(1,0),过F的直线l与椭圆C相交于A、B两点.设点P(4,3),记PA、PB的斜率分别为k1和k2
(1)求椭圆C的方程;
(2)如果直线l的斜率等于-1,求出k1•k2的值;
(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}满足a1=1,a2=3,若|an+1-an|=2n(n∈N*),且{a2n-1}是递增数列、{a2n}是递减数列,则$\underset{lim}{n→∞}$$\frac{{a}_{2n-1}}{{a}_{2n}}$=-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案