精英家教网 > 高中数学 > 题目详情
5.若y=f(x)定义在R上的奇函数,当x≤0时,f(x)=x3+x2+1,当x>0时,f(x)的函数解析式为f(x)=x3-x2-1.

分析 x>0时,-x<0,由已知表达式可求得f(-x),由奇函数的性质可得f(x)与f(-x)的关系,从而可求出f(x).

解答 解:当x>0时,-x<0,
则∵x≤0时,f(x)=x3+x2+1,
∴f(-x)=(-x)3+(-x)2+1=-x3+x2+1.
又f(x)是R上的奇函数,∴f(-x)=-f(x)
∴当x>0时,f(x)=-f(-x)=x3-x2-1.
故答案为:f(x)=x3-x2-1.

点评 本题考查函数解析式的求解及奇函数的性质,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.因式分解:
(1)x2-y2+a2-b2+2ax+2by  
(2)3x2+5xy-2y2+x+9y-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\sqrt{{x}^{2}-4x+8}$+$\sqrt{{x}^{2}-2x+2}$,求f(x)的最小值,并求此时的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.用描述法表示集合{1,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=asin2x+bx${\;}^{\frac{2}{3}}$+4(a,b∈R),若f(lg$\frac{1}{2016}$)=2017,则f(lg2016)=(  )
A.2018B.-2014C.2017D.-2013

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设全集U=R,集合A={x|-4<x<4},B={x|x>3},求A∪B,∁U(A∪B)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设A={x|x≤-1或1<x<2},B={x|$\frac{x-a}{x-b}$≤0},已知A∩B={x|-3<x≤-1},A∪B={x|x<2},则a+b的值为(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.cos(-$\frac{16π}{3}$)+sin(-$\frac{16π}{3}$)的值为-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{1}{2}$an+($\frac{1}{2}$)n+1,则{an}的通项公式为an=$\frac{n}{{2}^{n}}$.

查看答案和解析>>

同步练习册答案