精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的最小正周期;
(2)当时,求函数的取值范围。

(1);(2)

解析试题分析:(1)把函数使用公式展开得,化简得,然后利用降幂公式得,最后得,即得函数的最小正周期
(2)由(1)得,因为,所以,由三角函数的有界性得,所以,故函数的取值范围为.
(1)因为 
    

,           
所以函数的最小正周期.           
(2)因为 所以 
所以,         
所以,     
所以函数的取值范围为.
考点:三角恒等变换;三角函数的周期;三角函数的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2cosxsin(x+)-sin2x+sinxcosx.
(1)求函数f(x)的单调递减区间;
(2)将函数f(x)的图象沿x轴向右平移m个单位后的图象关于直线x=对称,求m的最小正值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的值;
(2)当时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某污水处理厂要在一正方形污水处理池内修建一个三角形隔离区以投放净化物质,其形状为三角形,其中位于边上,位于边上.已知米,,设,记,当越大,则污水净化效果越好.
(1)求关于的函数解析式,并求定义域;
(2)求最大值,并指出等号成立条件?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,求函数的解析式;
(2)若时,的图像与轴有交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2014·济南模拟)已知函数f(x)=sinωx-sin2+(ω>0)的最小正周期为π.
(1)求ω的值及函数f(x)的单调递增区间.
(2)当x∈时,求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数,非零向量,我们称为函数的“相伴向量”,为向量的“相伴函数”.
(1)已知函数的最小正周期为,求函数的“相伴向量”;
(2)记向量的“相伴函数”为,将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象上所有点向左平移个单位长度,得到函数,若,求的值;
(3)对于函数,是否存在“相伴向量”?若存在,求出“相伴向量”;
若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,若的最大值为0,最小值为-4,试求的值,并求的最大、最小值及相应的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,设函数
(1)求f(x)的最小正周期;
(2)求f(x)在[0,]上的最大值和最小值.

查看答案和解析>>

同步练习册答案