精英家教网 > 高中数学 > 题目详情

(2014·济南模拟)已知函数f(x)=sinωx-sin2+(ω>0)的最小正周期为π.
(1)求ω的值及函数f(x)的单调递增区间.
(2)当x∈时,求函数f(x)的取值范围.

(1),k∈Z.
(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数.
(1)若,求的最大值及相应的的取值集合;
(2)若的一个零点,且,求的值和的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知扇形的周长为30,当它的半径R和圆心角各取何值时,扇形的面积S最大?并求出扇形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=4x3-3x2cosθ+,其中x∈R,θ为参数,且0≤θ≤2π.
(1)当时,判断函数f(x)是否有极值;
(2)要使函数f(x)的极小值大于零,求参数θ的取值范围;
(3)若对(2)中所求的取值范围内的任意参数θ,函数f(x)在区间(2A-1,A)内都是增函数,求实数A的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期;
(2)当时,求函数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)用“五点法”画出函数在一个周期内的图像
(2)求函数的最小正周期和单调增区间;
(3)在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求值;
(2)求的最小值正周期;
(3)求的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)化简=;  (2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013·佛山模拟)在平面直角坐标系xOy中,以Ox为始边,角α的终边与单位圆O的交点B在第一象限,已知A(-1,3).
(1)若OA⊥OB,求tan α的值;
(2)若B点横坐标为,求SAOB

查看答案和解析>>

同步练习册答案