精英家教网 > 高中数学 > 题目详情
18.cos190°cos160°+sin190°sin160°=$\frac{\sqrt{3}}{2}$.

分析 根据两角差的余弦公式,代入可得答案.

解答 解:cos190°cos160°+sin190°sin160°=cos(190°-160°)=cos30°=$\frac{\sqrt{3}}{2}$,
故答案为:$\frac{\sqrt{3}}{2}$.

点评 本题考查的知识点是两角差的余弦函数,特殊角的三角函数值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在直棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=AA1=1,延长AC至D,使AC=CD,连接BD,B1D,C1D
(1)求证:AC1⊥B1D;
(2)求六面体BB1-A1ADC1的体积;
(3)求平面B1C1D与平面ABC所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6
(1)求数列{an}的通项公式;
(2)设bn+1=2log3$\frac{1}{{a}_{n}}$,求数列{anbn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合M={x|$\frac{x-3}{x+1}$<0},N={x|x≤-1},则集合{x|x≥3}等于(  )
A.M∩NB.M∪NC.R(M∩N)D.R(M∪N)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.与向量$\overrightarrow{a}$=(3,4)共线反向的单位向量$\overrightarrow{e}$=(  )
A.(-$\frac{3}{5}$,-$\frac{4}{5}$)B.(-$\frac{4}{5}$,$\frac{3}{5}$)C.(-$\frac{3}{5}$,-$\frac{4}{5}$),($\frac{3}{5}$,$\frac{4}{5}$)D.($±\frac{3}{5}$,$±\frac{4}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,由圆O外一点A引圆的切线AB和割线ADE,B为切点,DE为圆O的直径,且AD=DB.延长AB至C使得CE与圆O相切,连结CD交圆O于点F.
(Ⅰ)求$\frac{DE}{CE}$.
(Ⅱ)若圆O的半径为1,求CF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知p:x∈A={x|x2+ax+b≤0,a∈R,b∈R},q:x∈B={x|x2-2mx+m2-4<0,m∈R}.
(1)若A={x|-1≤x≤4},求a+b的值;
(2)在(1)的条件下,若¬q是p的必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点为A,P($\frac{4\sqrt{2}}{3}$,$\frac{b}{3}$)是C上的一点,以AP为直径的圆经过椭圆C的右焦点F.
(1)求椭圆C的方程;
(2)若直线l:y=kx+m(|k|≤$\frac{\sqrt{2}}{2}$)与椭圆C相交于A、B两点,M为椭圆C上任意一点,且线段OM的中点与线段AB的中点重合,求|OM|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求下列函数图象的对称轴、对称中心.
(1)y=sin($\frac{x}{2}$-$\frac{π}{4}$);
(2)y=2+sin($\frac{π}{3}$+2x).

查看答案和解析>>

同步练习册答案