精英家教网 > 高中数学 > 题目详情
18.已知变量x,y满足约束条件$\left\{\begin{array}{l}{|x-y|≤1}\\{|2x+y|≤2}\end{array}\right.$则|x-$\frac{1}{3}$|-y的最大值为2.

分析 由约束条件作出可行域,分类化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{|x-y|≤1}\\{|2x+y|≤2}\end{array}\right.$作出可行域如图,

令z=|x-$\frac{1}{3}$|-y=$\left\{\begin{array}{l}{x-y-\frac{1}{3},x>\frac{1}{3}}\\{-x-y+\frac{1}{3},x≤\frac{1}{3}}\end{array}\right.$,
联立$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=x-1}\end{array}\right.$,解得A($\frac{1}{3}$,-$\frac{2}{3}$).
联立$\left\{\begin{array}{l}{y=x-1}\\{y=-2x-2}\end{array}\right.$,解得B($-\frac{1}{3},-\frac{4}{3}$).
由图可知,当直线z=-x-y+$\frac{1}{3}$过B时,|x-$\frac{1}{3}$|-y的最大值为2.
故答案为:2.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)图象如图,f'(x)是f(x)的导函数,则下列数值排序正确的是(  )
A.0<f'(2)<f'(3)<f(3)-f(2)B.0<f'(3)<f'(2)<f(3)-f(2)C.0<f'(3)<f(3)-f(2)<f'(2)D.0<f(3)-f(2)<f'(2)<f'(3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=$\frac{1}{2}$sin(2x+$\frac{π}{3}$)-sinxcosx的单调减区间是(  )
A.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)B.[kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$](k∈Z)
C.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z)D.[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知命题p:lg(x2-2x-2)≥0;命题q:0<x<4.若p且q为假,p或q为真,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若-2≤x≤2,则函数$f(x)={(\frac{1}{4})}^{x}-3•{(\frac{1}{2})}^{x}+2$的值域为[$-\frac{1}{4}$,6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}的前n项和为Sn,a1=2,an+1=Sn+2(n≥1,n∈N*),数列{bn}满足bn=$\frac{2n-1}{{a}_{n}}$.
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn
(3)若数列{cn}满足cn=$\frac{{a}_{n}}{({a}_{n}-1)^{2}}$,且{cn}的前n项和为Kn,求证:Kn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.数列{an}中,若${a_1}=1,{a_{n+1}}=\frac{n}{n+1}{a_n}$,则an=$\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.圆(x+1)2+y2=1的圆心是抛物线y2=px(p<0)的焦点,则p=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,抛物线C:x2=2py(p>0)的焦点为F,点A在C上,若|AO|=|AF|=$\frac{3}{2}$;
(Ⅰ)求C的方程;
(Ⅱ)设直线l与C交于P,Q,若线段PQ的中点的纵坐标为1,求△OPQ的面积的最大值.

查看答案和解析>>

同步练习册答案