精英家教网 > 高中数学 > 题目详情
若双曲线
x2
a2
-
y2
3
=1的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则该双曲线的实轴长为
 
考点:双曲线的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:求出双曲线的渐近线方程,求得圆心到渐近线的距离,再由直线和圆相交的弦长公式,解方程即可得到a=1,进而得到实轴长.
解答: 解:双曲线
x2
a2
-
y2
3
=1的渐近线方程为y=±
3
a
x

3
x
±ay=0,
圆(x-2)2+y2=4的圆心为C(2,0),半径为r=2,
由圆的弦长公式得弦心距|CD|=
22-12
=
3

另一方面,圆心C到双曲线的渐近线
3x
-ay=0的距离为
d=
|
3
×2-a×0|
3+a2
=
2
3
3+a2

所以d=
2
3
3+a2
=
3

解得a2=1,即a=1,
该双曲线的实轴长为2a=2.
故答案为:2.
点评:本题考查双曲线的方程和性质,考查直线和圆相交的弦长公式,考查点到直线的距离公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合U=R,A={x∈Z|x≤-1},B={-2,-1,0,1,2},则(∁UA)∩B等于(  )
A、{-2,-1,0}
B、{-2,-1}
C、{1,2}
D、{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

若点P是曲线y=x2-lnx任意一点,则点P到直线y=x-2的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x,点P(m,0),O为坐标原点,若在抛物线C上存在一点Q,使得∠OQP=90°,则实数m的取值范围是(  )
A、(4,8)
B、(4,+∞)
C、(0,4)
D、(8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是平行四边形,PA⊥平面ABCD,AC⊥AB,点E是PD的中点.
(I)求证:PB⊥AC;
(Ⅱ)求证:PB∥平面ACE;
(Ⅲ)求三棱锥E-ABC与四棱锥P-ABCD的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
lgx,    x>0
x2-4,  x<0
的零点是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
sin(x-3π)cos(x+
π
2
)
tan(π-x)
+sin(2x+
π
3
).
(1)求f(
π
12
)的值;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中(如图1),已知AC=BC=2,∠ACB=120°,D,E,F分别为AB,AC,BC的中点,EF交CD于G,把△ADC沿CD折成如图2所示的三棱锥C-A1BD.
(1)求证:E1F∥平面A1BD;
(2)若二面角A1-CD-B为直二面角,求直线A1F与平面BCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z=a+bi(a,b∈R),且满足zi=1+i(其中i为虚数单位),则a+b=
 

查看答案和解析>>

同步练习册答案