精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知双曲线的一条渐近线方程是,若双曲线经过点,求此双曲线的标准方程。

解析试题分析:根据题意,双曲线的一条渐近线方程为x-2y=0,可设双曲线方程为-y2=λ(λ≠0),又由双曲线过点P(4,3),将点P的坐标代入可得λ的值,进而可得答案。
设双曲线的标准方程为
∵渐近线方程为,即
∴当焦点在x轴上时,,代入点,得
当焦点在y轴上时,,代入,无解;
∴双曲线的标准方程为:
考点:本题主要考查双曲线的标准方程的求法,需要学生熟练掌握已知渐近线方程时,如何设出双曲线的标准方程.
点评:解决该试题的关键是能很熟练的运用双曲线的渐近线方程设出其双曲线的标准方程,进而利用点的坐标得到结论。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线经过点,又知直线与双曲线C相交于A、B两点.
(1)求双曲线C的方程;
(2)若,求实数k值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆)的短轴长与焦距相等,且过定点,倾斜角为的直线交椭圆两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)确定直线轴上截距的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,点在椭圆上。
(1)求椭圆的离心率;
(2)若椭圆的短半轴长为,直线与椭圆交于A、B,且线段AB以M(1,1)为中点,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分) 将圆O: 上各点的纵坐标变为原来的一半 (横坐标不变), 得到曲线、抛物线的焦点是直线y=x-1与x轴的交点.
(1)求的标准方程;
(2)请问是否存在直线满足条件:① 过的焦点;②与交于不同两
,,且满足?若存在,求出直线的方程; 若不存在,说明
理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(12分)经过点作直线交双曲线两点,且 为 中点.
(1)求直线的方程 ;(2)求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线经过点,又知直线与双曲线C相交于A、B两点.
(1)求双曲线C的方程;
(2)若,求实数k值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图,已知椭圆(a>b>0)的离心率,过点 和的直线与原点的距离为

(1)求椭圆的方程;
(2)已知定点,若直线与椭圆交于两   点.问:是否存在的值,
使以为直径的圆过点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)已知双曲线的右焦点与抛物线的焦点重合,求该双曲线的焦点到其渐近线的距离.

查看答案和解析>>

同步练习册答案