精英家教网 > 高中数学 > 题目详情
如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的射影,M为PD上一点,且|MD|=
4
5
|PD|
(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程
(Ⅱ)求过点(3,0)且斜率
4
5
的直线被C所截线段的长度.
(Ⅰ)设M的坐标为(x,y)P的坐标为(xp,yp
由已知得:
xp=x
yp=
5
4
y

∵P在圆上,
x2+(
5
4
y)2=25
,即C的方程为
x2
25
+
y2
16
=1

(Ⅱ)过点(3,0)且斜率为
4
5
的直线方程为:y=
4
5
(x-3)

设直线与C的交点为A(x1,y1)B(x2,y2),
将直线方程y=
4
5
(x-3)代入C的方程,得
x2
25
+
(x-3)2
25
=1
即:x2-3x-8=0∴x1=
3-
41
2
x2=
3+
41
2

∴线段AB的长度为|AB|=
(x1-x2)2+(y1-y2)2
=
(1+
16
25
)(x1-x2)2

=
41•41
25
=
41
5
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两个焦点坐标分别是,并且经过点,求它的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.
(1)求C的方程;
(2)若直线l:y=kx+m与曲线C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知垂直竖在水平地面上相距20米的两根旗杆的高分别为10米和15米,地面上的动点P到两旗杆顶点的仰角相等,则点P的轨迹是(  )
A.椭圆B.圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动圆过定点(1,0),且与直线x=-1相切.
(1)求动圆的圆心轨迹C的方程;
(2)是否存在直线l,使l过点(0,1),并与轨迹C交于P,Q两点,且满足
OP
OQ
=0
?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,点P为双曲线上任意一点,过F1作∠F1PF2的平分线的垂线,垂足为Q,则点Q的轨迹方程为(  )
A.x2+y2=a2B.x2+y2=b2C.x2-y2=a2D.x2-y2=b2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若动点M到定点F1(0,-1)、F2(0,1)的距离之和为2,则点M的轨迹为(  )
A.椭圆B.直线F1F2
C.线段F1F2D.直线F1F2的垂直平分线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

动点P(x,y)(x≥0)到点F(1,0)的距离与点P到y轴的距离差为1,则点P的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设抛物线x2=4y与椭圆=1交于点E,F,则△OEF(O为坐标原点)的面积为(  )
A.3B.4C.6D.12

查看答案和解析>>

同步练习册答案