精英家教网 > 高中数学 > 题目详情
在锐角三角形ABC中,a,b,c分别为内角A,B,C所对的边,且满足
3
a-2bsinA=0.
(1)求角B的大小;
(2)当△ABC的外接圆的面积为4π时,求△ABC面积的最大值.
考点:余弦定理的应用,正弦定理
专题:解三角形
分析:(1)由已知及根据正弦定理可得:
3
sinA-2sinBsinA=0,由sinA≠0,解得sinB=
3
2
,又B为锐角,即可求B.
(2)设△ABC的外接圆的半径为R,由πR2=4π,可求R,进而可求b,由余弦定理可得ac≤12,由三角形面积公式即可求△ABC面积的最大值.
解答: 解:(1)由
3
a-2bsinA=0.根据正弦定理可得:
3
sinA-2sinBsinA=0…3分
因为sinA≠0,所以sinB=
3
2
,又B为锐角,则B=
π
3
…6分
(2)设△ABC的外接圆的半径为R,则πR2=4π,所以R=2,
b=2RsinB=4×
3
2
=2
3
…8分
由余弦定理可得:12=a2+c2-2ac
1
2
,所以12=a2+c2-ac≥ac,即ac≤12
当且仅当a=c=2
3
时,ac取得最大值…10分
此时S△ABC=
1
2
acsinB≤
1
2
×12×
3
2
=3
3
…13分
点评:本题主要考查了正弦定理,余弦定理,三角形面积公式,基本不等式在解三角形中的应用,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x,y满足约束条件
x-y-2≤0
x+2y-5≥0
y-2≤0
,则z=
2x+y
x
的最小值是(  )
A、
7
3
B、
1
3
C、
1
2
D、
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在等腰△ABC中,AB=AC,D是AC的中点,DE平分∠ADB,交AB于E,过A,D,E的圆交BD于N,若AE=
3
2
,则BN=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列命题:
①命题“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1<3x”;
②已知p、q为两个命题,若“p或q”为假命题,则“?p且?q为真命题”;
③“a>5”是“a>2”的充分不必要条件;
④“若xy=0,则x=0且y=0”的逆否命题为真命题.
其中所有真命题的序号是(  )
A、①②③B、②④C、②③D、④

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,b=1,c=2a,3sinA=5sinB,求c边.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数,在区间(
π
2
,π
)上恒正且是增函数的是(  )
A、y=sinx
B、y=cosx
C、y=-sinx
D、y=-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某学校准备修建一个面积为2400平方米的矩形活动场地(图中ABCD)的围栏,按照修建要求,中间用围墙EF隔开,使得ABEF为矩形,EFCD为正方形,设AB=x米,已知围墙(包括EF)的修建费用均为每米500元,设围墙(包括EF)的修建总费用为y元.
(1)求出y关于x的函数解析式及x的取值范围;
(2)当x为何值时,围墙(包括EF)的修建总费用y最小?并求出y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

两条直线y=kx+2k+1和x+2y-4=0的交点在第四象限,则k的取值范围是_
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(mx-2x)(0<m<1).
(1)当m=
1
2
时,求f(x)的定义域;
(2)试判断函数f(x)在区间(-∞,0)上的单调性并给出证明;
(3)若f(x)在(-∞,-1]上恒取正值,求m的取值范围.

查看答案和解析>>

同步练习册答案