精英家教网 > 高中数学 > 题目详情
数列{bn}前n项和为Sn,且满足Sn=
3
2
bn-n (n∈N*)
,若数列{an}满足a1=1,an=bn(
1
b1
+
1
b2
+…
1
bn-1
) (n≥2,n∈N*)

(1)求b1,b2及bn
(2)证明
an+1
an+1
=
bn
bn+1
(n≥2,n∈N*)

(3)求证:(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)<3(n∈N*)
考点:数列与不等式的综合
专题:综合题,等差数列与等比数列
分析:(1)由Sn=
3
2
bn-n,得Sn-1=
3
2
bn-1-(n-1),n≥2,n∈N*,所以bn=3bn-1+2,由此可知bn=3n-1;
(2)由条件可得
an
bn
=
1
b1
+
1
b2
+…
1
bn-1
①,
an+1
bn+1
=
1
b1
+
1
b2
+…+
1
bn-1
+
1
bn
②,②-①即可得出结论;
(3)左边=4(
1
b1
+
1
b2
+…+
1
bn-1
+
1
bn
),再利用放缩法,即可证明.
解答: (1)解:因为Sn=
3
2
bn-n,所以Sn-1=
3
2
bn-1-(n-1),n≥2,n∈N*
两式相减得bn=3bn-1+2
所以bn+1=3(bn-1+1),n≥2,n∈N*
因为S1=
3
2
b1-1,所以b1=2,b2=8.
又因为b1+1=3,所以{bn+1}是首项为3,公比为3的等比数列
所以bn+1=3n,所以bn=3n-1.
(2)证明:
an
bn
=
1
b1
+
1
b2
+…
1
bn-1
①,
an+1
bn+1
=
1
b1
+
1
b2
+…+
1
bn-1
+
1
bn
②,
②-①得
an+1
bn+1
-
an
bn
=
1
bn
,∴
an+1
bn-1
=
an+1
bn
,∴
an+1
an+1
=
bn
bn+1
(n≥2,n∈N*)

(3)证明:左边=
a1+1
a1
a2+1
a2
•…•
an+1
an
=
a1+1
a1a2
b2
b3
•…•
bn
bn+1
•an+1
=
a1+1
a1
b2
a2
•…•
an+1
bn+1
=4(
1
b1
+
1
b2
+…+
1
bn-1
+
1
bn
),
1
3n-1
3n+1
(3n-1)(3n+1-1)
=
3
2
1
3n-1
-
1
3n+1-1

1
b1
+
1
b2
+…+
1
bn-1
+
1
bn
=
1
2
+
1
8
+…+
1
3n-1
3
2
1
2
-
1
3n+1-1
)<
3
4

(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)<3(n∈N*)
点评:本题考查数列知识的综合运用和不等式的证明,考查学生分析解决问题的能力,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2(x-a)(a∈R),
(Ⅰ)当a=3时,求f(x)的极值点;
(Ⅱ)若存在x0∈[1,2]时,使得不等式f(x0)<-1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

五个人站成一排,求在下列条件下的不同排法种数:
(1)甲必须在排头;
(2)甲、乙相邻;
(3)甲不在排头,并且乙不在排尾;
(4)其中甲、乙两人自左向右从高到矮排列且互不相邻.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据下列条件求圆锥曲线的标准方程.
(1)已知椭圆的两个焦点坐标分别是(2,0),(-2,0),并且经过点(
5
2
,-
3
2
);
(2)离心率是e=
2
,经过点M(-5,3)的双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}前n项和Sn,且Sn=2an-2,令bn=log2an
(Ⅰ)试求数列{an}的通项公式;
(Ⅱ)设cn=
bn
an
,求证数列{cn}的前n项和Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单位向量
a
b
满足(2
a
-3
b
)•(2
a
+
b
)=3
(Ⅰ)求
a
b

(Ⅱ)求|2
a
-
b
|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>0且a≠1,p=loga(a3+a+1),Q=loga(a2+a+1),则p,q的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5袋,能获奖的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数,例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:
①函数f(x)=x2(x∈R)是单函数;
②指数函数f(x)=2x(x∈R)是单函数;
③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
④在定义域上具有单调性的函数一定是单函数;
⑤若f(x)为单函数,则函数f(x)在定义域上具有单调性.
其中的真命题是
 
.(写出所有真命题的编号)

查看答案和解析>>

同步练习册答案