ÉèË«ÇúÏߦ£µÄ·½³ÌΪ
x2
a2
-
y2
b2
=1(a£¾0£¬b£¾0)
£¬Ð±ÂÊΪkµÄÖ±Ïßl¹ýË«ÇúÏߦ£µÄÓÒ½¹µãÇÒ½»Ë«ÇúÏߦ£ÓÚA£¬BÁ½µã£¬ÉèÖ±ÏßOA£¬OB£¨OÎª×ø±êÔ­µã£©µÄбÂÊΪk1£¬k2£®
£¨1£©ÈôË«ÇúÏߦ£µÄÒ»Ìõ½¥½üÏßµÄÇãб½ÇΪ60¡ã£¬¶¥µãµ½½¥½üÏߵľàÀëΪ
3
2
£¬ÇóË«ÇúÏߦ£µÄ·½³Ì£»
£¨2£©ÔÚ£¨1£©ÖÐË«ÇúÏߦ£µÄ·½³ÌµÄÌõ¼þÏ£¬Çók1•k2µÄÖµ£¨¼ÆËãµÄ½á¹ûÓÃk±íʾ£©£»
£¨3£©ÈôµãMΪ˫ÇúÏߦ£ÉϵÄÒ»µã£¬ÇÒ´æÔÚÈñ½Ç¦ÈʹµÃ
OM
=cos¦È•
OA
+sin¦È•
OB
£¬ÎÊ´Ëʱk1•k2ÊÇ·ñ¿ÉÄÜΪ¶¨Öµ£¿²¢ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺¼ÆËãÌâ,Ô²×¶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÓÉÌâÒâÁз½³Ì×é
b
a
=tan60¡ã
ab
a2+b2
=
3
2
c2=a2+b2
£¬´Ó¶øÇó³öË«ÇúÏߵķ½³Ì£»
£¨2£©ÓÉÌâÒ⣬ֱÏßlµÄ·½³ÌΪy=k£¨x-2£©£¬Óëx2-
y2
3
=1ÁªÁ¢Ïûy¿ÉµÃ£¨3-k2£©x2+4k2x-4k2-3=0£¬ÀûÓÃΤ´ï¶¨Àí¼ò»¯ÔËË㣻
£¨3£©ÉèA£¨xA£¬yA£©£¬B£¨xB£¬yB£©£¬Ôò
x
2
A
a2
-
y
2
A
b
2
 
=1£¬
x
2
B
a2
-
y
2
B
b2
=1£»ÓÖÉèM£¨x£¬y£©£¬
x=xAcos¦È+xBsin¦È
y=yAcos¦È+yBsin¦È
£¬´úÈëË«ÇúÏß·½³Ì»¯¼òÇó½â£®
½â´ð£º ½â£º£¨1£©ÓÉÌâÒâµÃ£¬
b
a
=tan60¡ã
ab
a2+b2
=
3
2
c2=a2+b2
£¬
½âµÃ£¬a2=1£¬b2=3£¬
¹ÊË«ÇúÏߵķ½³ÌΪx2-
y2
3
=1£»
£¨2£©ÓÉÌâÒ⣬ֱÏßlµÄ·½³ÌΪy=k£¨x-2£©£»
Óëx2-
y2
3
=1ÁªÁ¢Ïûy¿ÉµÃ£¬
£¨3-k2£©x2+4k2x-4k2-3=0£¬
¹Ê3-k2¡Ù0£¬ÇÒ¡÷=16£¨k2£©2+4£¨3-k2£©£¨4k2+3£©£¾0£¬
k¡Ù¡À
3
£¬
ÓÉΤ´ï¶¨Àí¿ÉµÃ£¬
xA+xB=
-4k2
3-k2
£¬xAxB=
-4k2-3
3-k2
£¬
yAyB=k2[xAxB-2£¨xA+xB£©+4]
=k2[
-4k2-3
3-k2
-2
-4k2
3-k2
+4]£¬
=
9k2
3-k2
£¬
Ôòk1•k2=
yAyB
xAxB
=
9k2
3-k2
¡Â
-4k2-3
3-k2

=
9k2
-4k2-3
£¬£¨k¡Ù¡À
3
£©£»
£¨3£©ÉèA£¨xA£¬yA£©£¬B£¨xB£¬yB£©£¬
Ôò
x
2
A
a2
-
y
2
A
b
2
 
=1£¬
x
2
B
a2
-
y
2
B
b2
=1£»
ÓÖÉèM£¨x£¬y£©£¬
ÔòÓÉ
OM
=cos¦È•
OA
+sin¦È•
OB
µÃ£¬
x=xAcos¦È+xBsin¦È
y=yAcos¦È+yBsin¦È
£¬
Ôò
(xAcos¦È+xBsin¦È)2
a2
-
(yAcos¦È+yBsin¦È)2
b2
=1£¬
ÕûÀíµÃ£¬
£¨
x
2
A
a2
-
y
2
A
b
2
 
£©cos2¦È+£¨
x
2
B
a2
-
y
2
B
b2
£©sin2¦È+2£¨
xAxB
a2
-
yAyB
b2
£©sin¦Ècos¦È=1£¬
Ôòcos2¦È+sin2¦È+2£¨
xAxB
a2
-
yAyB
b2
£©sin¦Ècos¦È=1£¬
Ôò2£¨
xAxB
a2
-
yAyB
b2
£©sin¦Ècos¦È=0£¬
¡ß¦ÈÊÇÈñ½Ç£¬¡àsin¦Ècos¦È¡Ù0£¬
¡à
xAxB
a2
-
yAyB
b2
=0£¬
¡àk1•k2=
yAyB
xAxB
=
b2
a2
£»Îª¶¨Öµ£®
µãÆÀ£º±¾Ì⿼²éÁËË«ÇúÏßÓëÖ±ÏßµÄλÖùØÏµµÄÓ¦Ó㬻¯¼òºÜÀ§ÄÑ£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªa£¾0£¬a¡Ù1£¬Èôloga£¨2x+1£©£¼loga4£¬ÇóxµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

y=
x-4
x-5
µÄ¶¨ÒåÓòΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

»¯¼ò£º
sin2¦Á
1+tan2¦Á
-
cos2¦Á
1+cot2¦Á
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÔ²×¶µÄ¸ßºÍµ×Ãæ°ë¾¶¾ùΪ1£¬Èô¹ýÔ²×¶Á½ÌõĸÏߵĽØÃæÎªÕýÈý½ÇÐΣ¬Çóµ×ÃæÔ²Ðĵ½¸Ã½ØÃæµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôÖ±Ïßl1µÄ·½ÏòÏòÁ¿Óël2µÄ·½ÏòÏòÁ¿µÄ¼Ð½ÇÊÇ150¡ã£¬Ôòl1Óël2ÕâÁ½ÌõÒìÃæÖ±ÏßËù³ÉµÄ½ÇΪ£¨¡¡¡¡£©
A¡¢30¡ãB¡¢150¡ã
C¡¢30¡ã»ò150¡ãD¡¢ÒÔÉϾù´í

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=ax+logax£¨a£¾0ÇÒa¡Ù1£©ÔÚ[1£¬2]ÉϵÄ×î´óÖµÓë×îСֵ֮ºÍΪloga2+6£¬Ôòa=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ËıßÐÎOABCµÄ¶Ô½ÇÏßOBÓëACÏཻÓÚµãP£¬ÒÑÖª
OB
=2m
OA
+m
OC
£¬ÇÒ
AP
=¦Ë
AC
(m£¬¦Ë¡ÊR)
£¬ÔòʵÊý¦ËµÄֵΪ£®£¨¡¡¡¡£©
A¡¢
1
3
B¡¢
2
3
C¡¢
1
2
D¡¢
3
4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬ÒÑÖªAB=6£¬B=60¡ã£¬cos£¨B+C£©=-
2
7
7
£¬ÈôDΪ¡÷ABCÍâ½ÓÔ²ÁÓ»¡
A
C
Éϵ͝µã£®
£¨1£©ÇósinC£»
£¨2£©Çó¡÷ACDµÄÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸