精英家教网 > 高中数学 > 题目详情
7.已知椭圆C的中心在坐标原点O,左焦点为F(-l,0),离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的标准方程;
(2)过点F的直线,与椭圆C交于A、B两点,设$\overrightarrow{AF}=λ\overrightarrow{FB}$(其中1<入<3),求$\overrightarrow{OA}•\overrightarrow{OB}$的取值范围.

分析 (1)由c=1,e=$\frac{c}{a}$=$\frac{{\sqrt{2}}}{2}$,b2=a2-c2,求得a和b的值,求得椭圆方程;
(2)由题意可知设直线方程,将直线方程代入椭圆方程,由韦达定理可知求得y1+y2,y1•y2,由$\overrightarrow{AF}=λ\overrightarrow{FB}$(其中1<λ<3),可知:y1=-λy2,构造辅助函数t=λ+$\frac{1}{λ}$-2,t∈(0,3),代入求得m2=$\frac{2t}{4-t}$,根据向量数量积的坐标表示求得$\overrightarrow{OA}•\overrightarrow{OB}$=$\frac{1-2{m}^{2}}{2+{m}^{2}}$,m2=$\frac{2t}{4-t}$,根据一次函数的单调性即可求得$\overrightarrow{OA}•\overrightarrow{OB}$的取值范围.

解答 解:(1)由题意可知:设椭圆方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),
c=1,椭圆的离心率e=$\frac{c}{a}$=$\frac{{\sqrt{2}}}{2}$,
∴a=$\sqrt{2}$,
由b2=a2-c2=1,
∴椭圆的方程为:$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)$\overrightarrow{AF}=λ\overrightarrow{FB}$(其中1<λ<3),可知直线斜率不为0,
设直线l:x=my-1,A(x1,y1),B(x2,y2),
∴y1=-λy2
$\left\{\begin{array}{l}{x=my-1}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,整理得:(2+m2)y2-2my-1=0,
由韦达定理可知:y1+y2=$\frac{2m}{2+{m}^{2}}$,y1•y2=$\frac{-1}{2+{m}^{2}}$,
∴$\frac{4{m}^{2}}{2+{m}^{2}}$=$\frac{(1-λ)^{2}}{λ}$=λ+$\frac{1}{λ}$-2,
令t=λ+$\frac{1}{λ}$-2,t∈(0,$\frac{4}{3}$),
可得:m2=$\frac{2t}{4-t}$,
$\overrightarrow{OA}•\overrightarrow{OB}$=x1•x2+y1•y2=(my1-1)(my2-1)+y1•y2
=(1+m2)y1•y2-m(y1+y2)+1,
=$\frac{1-2{m}^{2}}{2+{m}^{2}}$,
将m2=$\frac{2t}{4-t}$代入整理得:$\overrightarrow{OA}•\overrightarrow{OB}$=$\frac{4-5t}{8}$,t∈(0,$\frac{4}{3}$),
由f(t)=$\frac{4-5t}{8}$,在(0,$\frac{4}{3}$)单调递减,
∴$\overrightarrow{OA}•\overrightarrow{OB}$∈(-$\frac{1}{3}$,$\frac{1}{2}$).

点评 本题考查椭圆的方程及简单几何性质,考查直线与椭圆的位置关系,韦达定理向量数量积的坐标运算,函数的最值,考查构造法,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.设△ABC的三个内角A,B,C所对应的边为a,b,c,若A,B,C依次成等差数列且a2+c2=kb2,则实数k的取值范围是(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.不等式(x-1)2>4的解集是{x|x<-1或x>3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“a>1”是“f(x)=(a-1)•ax在定义域内为增函数”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知△ABC中,$a=2,b=3,cosC=\frac{3}{5}$,此三角形的面积S等于(  )
A.$\frac{9}{5}$B.$\frac{12}{5}$C.$\frac{18}{5}$D.$\frac{24}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若点(2,$\sqrt{2}$)在幂函数f(x)=xa的图象上,则f($\frac{1}{4}$)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2+mx+n以(0,a)为切点的切线方程是2x+y-2=0
(Ⅰ)求实数m,n的值;
(Ⅱ)若方程f(x)=x2+b在[-$\frac{3}{2}$,3]上有两个不等实根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2sin(ωx+ϕ),ω>0,0≤ϕ≤π是R上的偶函数,且最小正周期为π
(1)求f(x)的解析式;
(2)用“五点法”作出函数f(x)的一个周期内的图象;
(3)求g(x)=f(x+$\frac{π}{6}$)的对称轴及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.四棱锥P-ABCD的底面是菱形,∠BAD=60°,PA⊥底面ABCD,PA=AB=a,E为棱PC上点.
(1)面EBD与面PAC能否始终垂直,证明你的结论;
(2)若E为PC中点,求异面直线BE与PA所成角;
(3)当△EBD面积最小时,求E-BDC体积.

查看答案和解析>>

同步练习册答案