精英家教网 > 高中数学 > 题目详情
已知实数p>0,直线3x-4y+2p=0与抛物线x2=2py和圆x2+(y-
p
2
2=
p2
4
从左到右的交点依次为A、B、C、D,则
AB
CD
的值为
 
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设A(x1,y1),D(x2,y2),抛物线的焦点为F,由题得|BF|=|CF|=
p
2
.由抛物线的定义得:|AB|=|AF|-|BF|=y1,同理|CD|=y2,所以
AB
CD
=
y1
y2
,联立直线3x-4y+2p=0与抛物线x2=2py的方程且消去x解出y1=
p
8
,y2=2p,即可得出结论.
解答: 解:设A(x1,y1),D(x2,y2),抛物线的焦点为F,
由题意得|BF|=|CF|=
p
2

由抛物线的定义得:|AB|=|AF|-|BF|=
p
2
+y1-
p
2
=y1,同理得|CD|=y2
所以
AB
CD
=
y1
y2

联立直线3x-4y+2p=0与抛物线x2=2py的方程且消去x得:8y2-17py+2p2=0
解得:y1=
p
8
,y2=2p,
所以
AB
CD
=
y1
y2
=
1
16

故答案为:
1
16
点评:解决此类题目的关键是对抛物线的定义要熟悉,即抛物线上的点到定点的距离与到定直线的距离相等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
x+2,x≥0
x2,x<0
,则f(f(-2))的值为(  )
A、0B、2C、4D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线有光学性质:由其焦点射出的光线经抛物线折射后,沿平行于抛物线对称轴的方向射出.现已知抛物线y2=2px(p>0)的焦点为F,过抛物线上点P(x0,y0)的切线为l,过P点作平行于x轴的直线m,过焦点F作平行于l的直线交m于M,则|PM|的长为(  )
A、
p
2
B、p
C、
p
2
+x0
D、p+x0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x2-a2|
ex
,其中e是自然对数的底数,实数a>0.
(1)试求函数f(x)的单调区间;
(2)证明:函数f(x)的极值点(x≠±a)与原点连线的斜率之乘积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(π-ωx),cosωx),
b
=(1,-
3
),且f(x)=
a
b
的最小正周期为π(ω>0)
(1)求ω的值;
(2)若x∈(0,
π
2
),解方程f(x)=1;
(3)在△OAB中,O为原点,A=(x,2),B(-3,5),且∠AOB为锐角,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

a,b,c表示直线,M表示平面,给出下列四个命题:
①若a∥M,b∥M,则a∥b;
②若b?M,a∥b,则a∥M;
③若a⊥c,b⊥c,则a∥b;
④若a⊥M,b⊥M,则a∥b.
其中正确命题的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A为左边圆圆心,AB垂直于DC,C为右边圆圆心,c,d两点在圆A上,求证:∠ABC=30°,∠DCB=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=4,an>0,前n项和为Sn,若an=
Sn
+
Sn-1
,(n∈N*,n≥2).
(l)求数列{an}的通项公式;
(2)若数列{
1
anan+1
}前n项和为Tn,求证
1
20
≤Tn
3
20

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,AB和AC分别是圆O的切线,其中B,C切点,且OC=3,AB=4,延长AO与圆O交于点D,则△ABD的面积是
 

查看答案和解析>>

同步练习册答案