分析 作出不等式组表示的平面区域,先考虑z=4x+3y,表示直线z=4x+3y在y轴上的截距,截距越大,z越大,结合图形可求z的最大值
解答 解:作出实数x,y满足条件不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,表示的平面区域,如图所示![]()
考虑z=4x+3y,
∵y=-$\frac{4}{3}$x+$\frac{1}{3}$z,
平移直线y=-$\frac{4}{3}$x+$\frac{1}{3}$z,当直线经过B表示直线z=4x+3y在y轴上的截距最大,
由$\left\{\begin{array}{l}{x=1}\\{x-y+1=0}\end{array}\right.$可得A(1,2),此时z=10,zmax=10.
给答案为:10.
点评 本题主要考查了线性规划在求解目标函数的最值中的应用,解题的关键是利用目标函数的几何意义.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 月份 | 9 | 10 | 11 | 12 | 1 |
| 历史(x 分) | 79 | 81 | 83 | 85 | 87 |
| 政治(y 分) | 77 | 79 | 79 | 82 | 83 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3-4\sqrt{3}}{10}$ | B. | -$\frac{3-4\sqrt{3}}{10}$ | C. | $\frac{4-3\sqrt{3}}{10}$ | D. | -$\frac{4-3\sqrt{3}}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 29 | B. | 30 | C. | 33 | D. | 36 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x=$\frac{π}{12}$ | B. | x=$\frac{π}{6}$ | C. | x=$\frac{π}{3}$ | D. | x=$\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com