分析 根据△ABC的三个内角成等差数列求出角B的值,再根据△ABC的面积与周长,利用余弦定理,即可求出△ABC的三边长.
解答 解:△ABC的三个内角A、B、C成等差数列,
所以$\left\{\begin{array}{l}{A+B+C=π}\\{A+C=2B}\end{array}\right.$,
解得B=$\frac{π}{3}$;
又△ABC的面积为
S△ABC=$\frac{1}{2}$acsin$\frac{π}{3}$=$\frac{\sqrt{3}}{4}$ac=10$\sqrt{3}$,
所以ac=40①;
又△ABC的周长为l=a+b+c=20②,
根据余弦定理得
b2=a2+c2-2accos$\frac{π}{3}$=(a+c)2-3ac=(20-b)2-3×40,
解得b=7,
代入②中,联立①,
解得a=5,c=8或a=8,c=5;
所以△ABC的三边长分别为5cm、7cm、8cm.
点评 本题考查了三角形的周长与面积的应用问题,也考查了余弦定理的应用问题,是综合性题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
| A. | 0.1% | B. | 1% | C. | 99% | D. | 99.9% |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{5π}{12}$,$\frac{π}{6}$] | B. | [-$\frac{7π}{12}$,$\frac{7π}{6}$] | C. | [$\frac{19π}{12}$,$\frac{15π}{6}$] | D. | [$\frac{31π}{12}$,$\frac{37π}{12}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“?x∈R,均有x2-3x-2≥0”的否定是:“?x∈R,使得x2-3x-2≤0” | |
| B. | “命题p∨q为真命题”是“命题p∧q为真命题”的充分不必要条件 | |
| C. | ?m∈R,使f(x)=mx${\;}^{{m^2}+2m}}$是幂函数,且函数f(x)在(0,+∞)上单调递增 | |
| D. | 若数据x1,x2,x3,…,xn的方差为1,则2x1,2x2,2x3,…,2xn的方差为2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com