精英家教网 > 高中数学 > 题目详情
9.原命题为“若复数z1,z2满足z1=±z2,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(  )
A.真,假,真B.假,假,真C.真,真,假D.假,假,假

分析 根据题意判断原命题的真假,根据逆命题的定义写出逆命题并判断真假,
再利用四种命题的真假关系判断否命题与逆否命题的真假.

解答 解:根据题意,原命题“若z1=±z2,则|z1|=|z2|”是真命题;
其逆命题是:“若|z1|=|z2|,则z1=±z2”,例|1|=|i|,而1与i不满足条件z1=±z2
∴原命题的逆命题是假命题;
根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,
∴命题的否命题是假命题,逆否命题是真命题.
故选:B.

点评 本题考查了四种命题的定义及真假关系,考查了共轭复数的定义,熟练掌握四种命题的真假关系是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知命题P:?x∈(0,+∞),lnx<lgx;命题q:?x∈R,x3=1-x2,则下列命题中为真命题的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设a∈R,函数f(x)=x|x-a|-a,若对任意的x∈[2,3],f(x)≥0恒成立,则a的取值范围是(-∞,$\frac{4}{3}$]∪[$\frac{9}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\frac{1}{e^x}$,则函数f(x)与直线y=-x平行的切线方程为x+y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\sqrt{{4^x}-{2^{x+1}}}$的定义域为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数z=$\frac{1+i}{1-i}$+m(1-i)(i为虚数单位)为纯虚数,则实数m的为(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.平面直角坐标系xOy中,椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F,离心率e=$\frac{{\sqrt{3}}}{2}$,过点F且垂直于x轴的直线被圆截得的弦长为1.
(1)求椭圆C的方程;
(2)记椭圆C的上、下顶点分别为A,B,设过点M(m,-2)(m≠0)的直线MA,MB与椭圆C分别交于点P,Q,求证:直线PQ必过一定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn,且Sn=n2+n.
(I)求数列{an}的通项公式an
(II)数列{bn}满足bn=$\frac{1}{{a}_{n}{a}_{n+1}}$(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某影院有50排座位,每排有60个座号,一次报告会坐满了听众,会后留下座号为18的所有听众50人进行座谈,这是运用了(  )
A.抽签法B.随机数表法C.系统抽样D.放回抽样

查看答案和解析>>

同步练习册答案