精英家教网 > 高中数学 > 题目详情

【题目】将函数f(x)=sin2x的图象向右平移φ(0<φ< )个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min= ,则φ=(
A.
B.
C.
D.

【答案】D
【解析】解:因为将函数f(x)=sin2x的周期为π,函数的图象向右平移φ(0<φ< )个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min= , 不妨x1= ,x2= ,即g(x)在x2= ,取得最小值,sin(2× ﹣2φ)=﹣1,此时φ= - ,不合题意,
x1= ,x2= ,即g(x)在x2= ,取得最大值,sin(2× ﹣2φ)=1,此时φ= ,满足题意.
故选:D.
利用三角函数的最值,求出自变量x1 , x2的值,然后判断选项即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2﹣4x+3,若f(x)≥mx对任意的实数x≥2都成立,则实数m的取值范围是(
A.[﹣2 ﹣4,﹣2 ?+4]
B.(﹣∞,﹣2 ﹣4]∪[﹣2 ?+4,+∞)
C.[﹣2 ?+4,+∞)
D.(﹣∞,﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动,则直线D1E与A1D所成角的大小是 , 若D1E⊥EC,则直线A1D与平面D1DE所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(ax﹣1)(x﹣1).
(1)若不等式f(x)<0的解集为{x|1<x<2},求实数a的值;
(2)当a>0时,解关于x的不等式f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,运行相应的程序,则输出的结果为(
A.2
B.1
C.0
D.﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为平行四边形, .

(Ⅰ)证明: 平面

(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , n∈N* , 已知a1=1,a2= ,a3= ,且当n≥2时,4Sn+2+5Sn=8Sn+1+Sn1
(1)求a4的值.
(2)证明:{an1 an}为等比数列;
(3)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在区间D上的函数y=f(x)满足:对x∈D,M∈R,使得|f(x)|≤M恒成立,则称函数y=f(x)在区间D上有界.则下列函数中有界的是:
①y=sinx;② ;③y=tanx;④
⑤y=x3+ax2+bx+1(﹣4≤x≤4),其中a,b∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为参数), 上的动点,且满足为坐标原点),以原点为极点, 轴的正半轴为极轴建立坐标系,点的极坐标为.

(1)求线段的中点的轨迹的普通方程;

(2)利用椭圆的极坐标方程证明为定值,并求面积的最大值.

查看答案和解析>>

同步练习册答案