【题目】已知函数的部分图象如图所示.
(1)求函数的解析式;
(2)设,且方程有两个不同的实数根,求实数m的取值范围和这两个根的和.
【答案】(1);(2)或,当时,两根和为,当时,两根和为.
【解析】
试题分析:(1)由函数图象的顶点坐标可知,由图象过,可求得的值,由五点法可求得的值,由此得到了函数的解析式;(2)在同一坐标系下画出和直线的图象,结合正弦函数的图象的特征,数形结合求得实数的取值范围和这两个根的和.
试题解析:(1)显然,又图象过(0,1)点,∴f(0)=1,
∴sinφ=,∵|φ|<,∴φ=;
由图象结合“五点法”可知,对应函数y=sinx图象的点(2π,0),
∴ω·+=2π,得ω=2.
所以所求的函数的解析式为:f(x)=2sin.
(2)如图所示,在同一坐标系中画出和y=m(m∈R)的图象,
由图可知,当-2<m<0或<m<2时,直线y=m与曲线有两个不同的交点,即原方程有两个不同的实数根. ∴m的取值范围为:-2<m<0或<m<2
当-2<m<0时,两根和为;当<m<2时,两根和为.
科目:高中数学 来源: 题型:
【题目】已知圆C经过点,,且圆心在直线上
(1)求圆C的方程.
(2)过点的直线与圆C交于A,B两点,问:在直线上是否存在定点N,使得(,分别为直线AN,BN的斜率)恒成立?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=a-bcos(b>0)的最大值为,最小值为-.
(1)求a,b的值;
(2)求函数g(x)=-4asin的最小值并求出对应x的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=AA1=A1C=2,平面ACC1A1⊥平面ABC.现以边AC的中点D为坐标原点,平面ABC内垂直于AC的直线为轴,直线AC为轴,直线DA1为轴建立空间直角坐标系,解决以下问题:
(1)求异面直线AB与A1C所成角的余弦值;
(2)求直线AB与平面A1BC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中,,分别为,的中点,,如图1.以为折痕将折起,使点到达点的位置,如图2.
如图1 如图2
(1)证明:平面平面;
(2)若平面平面,求直线与平面所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:
房屋面积() | 115 | 110 | 80 | 135 | 105 |
销售价格(万元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(1)画出数据对应的散点图;
(2)求线性回归方程,并在散点图中加上回归直线;
(3)据(2)的结果估计当房屋面积为150时的销售价格.附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示, 是海面上一条南北方向的海防警戒线,在 上点 处有一个水声监测点,另两个监测点 分别在 的正东方向 处和 处.某时刻,监测点 收到发自目标 的一个声波, 后监测点 后监测点 相继收到这一信号,在当时的气象条件下,声波在水中的传播速度是 .
(1)设 到 的距离为 ,用 分别表示 到 的距离,并求 的值;
(2)求目标 的海防警戒线 的距离(精确到 ).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com