精英家教网 > 高中数学 > 题目详情
已知实数a>0,命题p:实数x满足x2-5ax+4a2<0,命题q:实数x满足
x-4
x-2
≤0.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分而不必要条件,求实数a的取值范围.
考点:复合命题的真假,必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:(1)若a=1,求出命题p,q的等价条件,利用p∧q为真,则p,q为真,即可求实数x的取值范围;
(2)若¬p是¬q的充分而不必要条件,等价于,利用¬p是¬q的充分而不必要条件,即可求实数a的取值范围.
解答: 解:(1)若a=1,不等式为x2-5x+4<0,即1<x<4,即p:1<x<4,
命题q:实数x满足
x-4
x-2
≤0,则2<x≤4,即q:2<x≤4,
若p∧q为真,则p,q同时为真,则实数x的取值范围是2<x≤4;
(2)∵x2-5ax+4a2<0,
∴(x-a)(x-4a)<0,
若a>0,则不等式的解为a<x<4a,
若a<0,则不等式的解为4a<x<a,
∵q:2<x≤4,
∴若¬p是¬q的充分而不必要条件,则q是p的充分而不必要条件,
则a>0时,
a≤2
4a>4
,解得1<a≤2,
当a<0,无解,
综上,实数a的取值范围是1<a≤2.
点评:本题主要考查充分条件和必要条件的应用,以及不等式的求解,利用不等式的解法时解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三个顶点分别为A(4,0),B(8,10),C(0,6).
(1)求AC边上的高所在的直线方程;
(2)求AC边上的中线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知甲、乙两名同学在五次数学测验中的得分如茎叶图,则甲、乙两名同学数学学习成绩(  )
A、甲比乙稳定
B、甲、乙稳定程度相同
C、乙比甲稳定
D、无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosα<0,tan2α>0,则在(0,π)内,α的取值范围是(  )
A、(0,
π
4
B、(
π
2
4
C、(
4
,π)
D、(
π
2
,π)

查看答案和解析>>

科目:高中数学 来源: 题型:

在平行六面体ABCD-EFGH中,已知M、N、R分别是AB、AD、AE上的点,且AM=MB,AN=
1
2
ND,AR=2RE,求平面MNR分对角线AG所得线段AP与PG的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出四个函数,分别满足①f(x+y)=f(x)+f(y);②g(x+y)=g(x)•g(y);③ϕ(x•y)=ϕ(x)+ϕ(y);④ω(x•y)=ω(x)•ω(y),又给出四个函数的图象如下:
则正确的配匹方案是(  )
A、①-M  ②-N  ③-P  ④-Q
B、①-N  ②-P  ③-M  ④-Q
C、①-P  ②-M  ③-N  ④-Q
D、①-Q  ②-M  ③-N  ④-P

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-4x2+4ax-4a-a2
(1)当a=-2时,作出函数y=f(x)的草图(不用列表),
并由图象求当-1.5≤x≤0时,函数y=f(x)的最值;
(2)若函数f(x)在0≤x≤1时的最大值为-5,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对某交通要道以往的日车流量(单位:万辆)进行统计,得到如下记录:
日车流量x0≤x<55≤x<1010≤x<1515≤x<2020≤x<25x≥25
频率0.050.250.350.250.100
将日车流量落入各组的频率视为概率,并假设每天的车流量相互独立.
(Ⅰ)求在未来连续3天里,有连续2天的日车流量都不低于10万辆且另1天的日车流量低于5万辆的概率;
(Ⅱ)用X表示在未来3天时间里日车流量不低于10万辆的天数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-ax2+bx,其中a、b是实数,
(Ⅰ)已知a∈{0,1,2},b∈{0,1,2},求事件A:“f(x)是R上的单调增函数”发生的概率;
(Ⅱ)若f(x)是R上的奇函数,且b=-4,求f(x)的单调区间与极值.

查看答案和解析>>

同步练习册答案