分析 (1)要使f(x)与g(x)有意义,则有$\left\{\begin{array}{l}{x-3a>0}\\{x-a>0}\\{a>0且a≠1}\end{array}\right.$,由此能求出a的取值范围.
(2)在给定区间[a+2,a+3]上恒有|f(x)-g(x)|≤1,等价于|loga(x-3a)(x-a)|≤1,即a≤(x-2a)2-a2≤$\frac{1}{a}$对于任意x∈[a+2,a+3]恒成立.
解答 解:(1)要使f(x)与g(x)有意义,则有$\left\{\begin{array}{l}{x-3a>0}\\{x-a>0}\\{a>0且a≠1}\end{array}\right.$,
要使f(x)与g(x)在给定区间[a+2,a+3]上都有意义,等价于:$\left\{\begin{array}{l}{a+2>3a}\\{a>0且a≠1}\end{array}\right.$,
所以0<a<1.
(2)在给定区间[a+2,a+3]上恒有|f(x)-g(x)|≤1,等价于|loga(x-3a)(x-a)|≤1,
即a≤(x-2a)2-a2≤$\frac{1}{a}$对于任意x∈[a+2,a+3]恒成立.
设h(x)=(x-2a)2-a2,x∈[a+2,a+3],
且其对称轴x=2a<2在区间[a+2,a+3]的左边,
?$\left\{\begin{array}{l}{a≤h(a+2)}\\{\frac{1}{a}≥h(a+3)}\end{array}\right.$?$\left\{\begin{array}{l}{a≤4-4a}\\{\frac{1}{a}≥9-6a}\end{array}\right.$,∴0<a≤$\frac{9-\sqrt{57}}{12}$.
点评 本题考查对数函数的性质和应用,解题时要注意函数恒成立的充要条件的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | ?a∈R,函数f(x)和g(x)都是奇函数 | B. | ?a∈R,函数f(x)和g(x)都是奇函数 | ||
| C. | ?a∈R,函数f(x)和g(x)都是偶函数 | D. | ?a∈R,函数f(x)和g(x)都是偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-5)∪(5,+∞) | B. | (-5,-2)∪(2,5) | C. | (-∞,-5)∪(-2,0) | D. | (-∞,-5)∪(-2,0)∪(2,5) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$ | B. | π | C. | 2π | D. | 4π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①③ | B. | ②③ | C. | ①④ | D. | ②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 4 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com