精英家教网 > 高中数学 > 题目详情
18.已知数列{an}的通项为an=$\frac{1}{n(n+1)}$+n2n-1,则其前n项和Sn=$\frac{n}{n+1}$+(n-1)2n+1.

分析 构造数列bn=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,cn=n2n-1,从而分别求其前n项和,从而解得.

解答 解:令bn=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
故Tn=b1+b2+…+bn-1+bn
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n-1}$-$\frac{1}{n}$+$\frac{1}{n}$-$\frac{1}{n+1}$
=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$;
令cn=n2n-1
故T′n=c1+c2+c3+…+cn=1+2•2+3•22+…+n2n-1
2T′n=1•2+2•22+3•23+…+n2n
两式相减可得,
T′n=-1-2-22-23-…-2n-1+n2n
=-$\frac{1(1-{2}^{n})}{1-2}$+n2n
=(n-1)2n+1;
故Sn=$\frac{n}{n+1}$+(n-1)2n+1.
故答案为:$\frac{n}{n+1}$+(n-1)2n+1.

点评 本题考查了构造法的应用及裂项求和法与错位相减法的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.近年来世界各地地震频繁发生,给人民的生命和财产带来了重大损失,地震的阴云笼罩在人们心头,挥之不去,不少民众生活在地震恐慌之中.为了有效做好室外地震预防,某公司组织设计人员特别设计了一款帐篷,要求:帐篷下部的形状是高为1m的正四棱柱,上部的形状是侧棱长为3m的正四棱锥,且要使帐篷的体积最大.那么,这个帐篷的顶点O到底面中心O1的距离应设计为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若$\frac{2}{x}$+$\frac{1}{2y}$=1(x、y位正实数),则x+y的最小值是(  )
A.5B.$\frac{9}{2}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.①直线a与平面α的关系可分为a在平面α外或a在平面α内两类;
②过两异面直线中的一条且与另一条直线平行的平面必存在;
③与一个平面内的一条直线平行的直线,必与此平面平行;
④两平行线中有一条与平面α平行,则另一条也与平面α平行.
上述命题中其中真命题的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆E的左、右焦点分别为F1(-1,0)、F2(1,0),长轴长为4.
(1)求椭圆E的方程;
(2)斜率为-$\frac{1}{2}$的直线l与椭圆E有且只有一个公共点P,过点P作直线l的垂线m,直线m与x轴相交于点Q,求证:∠F1PQ=∠F2PQ;
(3)根据第(2)小题的结论,请你写出一个一般化的命题,使得第(2)小题是该命题的一个特例.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设$\overrightarrow{i}$=(1,0),$\overrightarrow{j}$=(0,1),$\overrightarrow{a}$=2$\overrightarrow{i}$+3$\overrightarrow{j}$,$\overrightarrow{b}$=k$\overrightarrow{i}$-4$\overrightarrow{j}$,若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数k的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sinθ与cosθ是方程6x2-5x+m=0的两根,求m和sin3θ+cos3θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知二次函数f(x),当x=2时,函数有最大值1,且图象被x轴所截的两点间的距离为6,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=x2+f′(2)(lnx-x),则f(1)=(  )
A.$\frac{5}{3}$B.-$\frac{5}{3}$C.-3D.3

查看答案和解析>>

同步练习册答案