【题目】在直角坐标系
中,圆
的参数方程为
(
为参数),直线
的参数方程为
(
为参数).
(1)若直线
与圆
相交于
,
两点,求弦长
,若点
,求
的值;
(2)以该直角坐标系的原点
为极点,
轴的非负半轴为极轴建立极坐标系,圆
的极坐标方程为
,圆
和圆
的交点为
,
,求弦
所在直线的直角坐标方程.
科目:高中数学 来源: 题型:
【题目】如图,已知直四棱柱
的底面是直角梯形,
,
,
、
分别是棱
、
上的动点,且
,
,
,
.
![]()
(1)证明:无论点
怎样运动,四边形
都为矩形;
(2)当
时,求几何体
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学理科成绩优异,今年参加了数学,物理,化学,生物4门学科竞赛.已知该同学数学获一等奖的概率为
,物理,化学,生物获一等奖的概率都是
,且四门学科是否获一等奖相互独立.
(1)求该同学至多有一门学科获得一等奖的概率;
(2)用随机变量
表示该同学获得一等奖的总数,求
的概率分布和数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电视台问政直播节目首场内容是“让交通更顺畅”.A、B、C、D四个管理部门的负责人接受问政,分别负责问政A、B、C、D四个管理部门的现场市民代表(每一名代表只参加一个部门的问政)人数的条形图如下.为了了解市民对武汉市实施“让交通更顺畅”几个月来的评价,对每位现场市民都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:
满意 | 一般 | 不满意 | |
A部门 | 50% | 25% | 25% |
B部门 | 80% | 0 | 20% |
C部门 | 50% | 50% | 0 |
D部门 | 40% | 20% | 40% |
![]()
(1)若市民甲选择的是A部门,求甲的调查问卷被选中的概率;
(2)若想从调查问卷被选中且填写不满意的市民中再选出2人进行电视访谈,求这两人中至少有一人选择的是D部门的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
(
),圆
(
),若圆
的一条切线
与椭圆
相交于
两点.
(1)当
,
时,若点
都在坐标轴的正半轴上,求椭圆
的方程;
(2)若以
为直径的圆经过坐标原点
,探究
是否满足
,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点M在椭圆![]()
上,以M为圆心的圆与x轴相切于椭圆的右焦点F.
(Ⅰ)若圆M与y轴相切,求椭圆的离心率;
(Ⅱ)若圆M与y轴相交于A,B两点,且
是边长为2的正三角形,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列
满足:
,
.
的前n项和为
.
(Ⅰ)求
及
;
(Ⅱ)若
,
(
),求数列
的前
项和
.
【答案】(Ⅰ)
,
(Ⅱ)
=![]()
【解析】
试题分析:(Ⅰ)设出首项a1和公差d ,利用等差数列通项公式,就可求出
,再利用等差数列前项求和公式就可求出
;(Ⅱ)由(Ⅰ)知
,再利用
,
(
),就可求出
,再利用错位相减法就可求出
.
试题解析:(Ⅰ)设等差数列{an}的首项为a1,公差为d
∵
,
∴
解得 ![]()
∴ ![]()
,
(Ⅱ)∵
,
∴ ![]()
∵
∴ ![]()
∴ ![]()
=
(1-
+
-
+…+
-
)
=
(1-
) =![]()
所以数列
的前
项和
=
.
考点:1.等差数列的通项公式; 2. 等差数列的前n项和公式; 3.裂项法求数列的前n项和公式
【题型】解答题
【结束】
18
【题目】在如图所示的几何体中,四边形
是等腰梯形,
,
,
平面
,
,
.
![]()
(
)求证:
平面
.
(
)求二面角
的余弦值.
(
)在线段
(含端点)上,是否存在一点
,使得
平面
,若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com