分析 根据y=$\frac{1}{x}+\frac{4}{1-x}$=($\frac{1}{x}+\frac{4}{1-x}$)[x+(1-x)]=1+4+$\frac{1-x}{x}$+$\frac{4x}{1-x}$,再利用基本不等式求得它的最小值.
解答 解:∵0<x<1,∴0<1-x<1,
则y=$\frac{1}{x}+\frac{4}{1-x}$=($\frac{1}{x}+\frac{4}{1-x}$)[x+(1-x)]=1+4+$\frac{1-x}{x}$+$\frac{4x}{1-x}$≥5+2$\sqrt{\frac{1-x}{x}•\frac{4x}{1-x}}$=9,
当且仅当$\frac{1-x}{x}$=$\frac{4x}{1-x}$,即x=$\frac{1}{3}$时,取等号,
故y=$\frac{1}{x}+\frac{4}{1-x}$ 的最小值为9,
故答案为:9.
点评 本题主要考查了利用基本不等式求解函数的最值,解题的关键是灵活利用x+(1-x)=1的条件,注意基本不等式成立的条件,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 34 | B. | $\sqrt{34}$ | C. | 6 | D. | 3$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com