精英家教网 > 高中数学 > 题目详情

已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点P(-3,).
(1)求sin 2α-tan α的值;
(2)若函数f(x)=cos(x-α)cos α-sin(x-α)sin α,求函数y=f-2f2(x)在区间上的值域.

(1)     (2) [-2,1]

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为了得到函数y=2sin(x∈R)的图象,只需把函数y=2sinx(x∈R)的图象上所有的点经过怎样的变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π)的部分图像如图所示,

(1)求ω,φ的值;
(2)设g(x)=2f f-1,当x∈[0,]时,求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a>0,函数f(x)=-2asin(2x+)+2a+b,当x∈[0,]时,-5≤f(x)≤1.
(1)求常数a,b的值.
(2)设g(x)=f(x+)且lg g(x)>0,求g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数)的最小正周期为
(1)求函数的单调增区间;
(2)将函数的图象向左平移个单位,再向上平移个单位,得到函数的图象.若上至少含有个零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某园林单位准备绿化一块直径为BC的半圆形空地,△ABC外的地方种草,△ABC的内接正方形PQRS为一水池,其余的地方种花,若BCa,∠ABCθ,设△ABC的面积为S1,正方形的PQRS面积为S2.
 
(1)用aθ表示S1S2
(2)当a固定,θ变化时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦´矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.
按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长等于9米的弧田.

(1)计算弧田的实际面积;
(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期及在区间上的最大值和最小值;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2sin (0≤x≤5),点AB分别是函数yf(x)图象上的最高点和最低点.
(1)求点AB的坐标以及·的值;
(2)设点AB分别在角αβ的终边上,求tan(α-2β)的值.

查看答案和解析>>

同步练习册答案