精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=ax的图象过点$(1,\;\frac{1}{2})$,且点$(n-1,\;\frac{a_n}{n^2})(n∈{N^*})$在函数f(x)=ax的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令${b_n}=\frac{a_n}{n}$,若数列{bn}的前n项和为Sn,求Sn

分析 (Ⅰ)由代入法可得a,f(x)的解析式,进而得到所求通项公式;
(Ⅱ)由${b_n}=\frac{a_n}{n}=\frac{n}{{{2^{n-1}}}}$,运用数列的求和方法:错位相减法,结合等比数列的求和公式,计算即可得到所求和.

解答 (本题满分12分)
解:(Ⅰ)∵函数f(x)=ax的图象过点$(1,\;\frac{1}{2})$,
∴$a=\frac{1}{2},f(x)={(\frac{1}{2})^x}$…(2分)
又点$(n-1,\;\frac{a_n}{n^2})(n∈{N^*})$在函数f(x)=ax的图象上,
从而$\frac{a_n}{n^2}=\frac{1}{{{2^{n-1}}}}$,即${a_n}=\frac{n^2}{{{2^{n-1}}}}$…(6分)
(Ⅱ)由${b_n}=\frac{a_n}{n}=\frac{n}{{{2^{n-1}}}}$,
得${S_n}=1+\frac{2}{2}+\frac{3}{2^2}+…+\frac{n-1}{{{2^{n-2}}}}+\frac{n}{{{2^{n-1}}}}$…(8分)
则$\frac{1}{2}{S_n}=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+…+\frac{n-1}{{{2^{n-1}}}}+\frac{n}{2^n}$,
两式相减得,$\frac{1}{2}{S_n}=(1+\frac{1}{2}+\frac{1}{2^2}+…+\frac{1}{{{2^{n-1}}}})-\frac{n}{2^n}$
∴${S_n}=4-\frac{n+2}{{{2^{n-1}}}},n∈{N^+}$…(12分)

点评 本题考查数列的通项公式和求和公式的求法,考查数列求和方法:错位相减法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.将直线y=2x绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为(  )
A.$y=-\frac{1}{2}x+\frac{1}{2}$B.$y=-\frac{1}{2}x+1$C.y=2x-2D.$y=\frac{1}{2}x+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若把英文单词“error”中的字母的拼写顺序写错了,则可能出现错误的种数是(  )
A.20种B.19种C.10种D.9种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点M(x,1)在角θ的终边上,且$cosθ=\frac{{\sqrt{2}}}{2}x$,则x=(  )
A.1B.-1C.1或-1D.-1或0或1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系中,以坐标原点O和A(5,2)为顶点作等腰直角△ABO,使∠B=90°,求点B和向量$\overrightarrow{AB}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设i为虚数单位,$\overline z$表示复数z的共轭复数,若z=1+i,则$-i•z+i•\overline z$等于(  )
A.-2B.-2iC.2D.2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在含有3件次品的100件产品中,任取2件,求:
(Ⅰ)取到的次品数X的分布列(分布列中的概率值用分数表示,不能含组合符号);
(Ⅱ)至少取到1件次品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知cosα=$\frac{1}{3}$,且-$\frac{π}{2}$<α<0.求$\frac{tan(-α-π)•sin(\frac{3π}{2}+α)}{cos(\frac{π}{2}-α)•tan(-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.甲.乙、丙三人准备在2017年元旦去自驾游,有A、B两条线路可以选择,根据以往的经验,选择线路A,旅行中遇到堵车的概率是$\frac{2}{3}$,不堵车的概率是$\frac{1}{3}$,选择线路B,旅行中遇到堵车的概率是p,不堵车的概率是1-p,若甲、乙两人选择线路A,丙选择线路B.且三人在旅行中是否堵车互不影响.
(1)若三人中恰有一人遇到堵车的概率是$\frac{5}{18}$,求p的值;
(2)在(1)的条件下,求三人中遇到堵车的人数ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案