分析 (1)设三个区注射的疫苗批号中恰好有两个区相同记为事件A,利用相互独立事件的概率公式求概率即可;
(2)设三个区选择的疫苗批号的中位数为X,写出X的所有可能取值,计算对应的概率值,写出X的分布列,计算数学期望值.
解答 解:(1)设三个区注射的疫苗批号中恰好有两个区相同记为事件A,
则:P(A)=$\frac{C_5^2•C_3^2•A_2^2}{5^3}=\frac{12}{25}$;
(2)设三个区选择的疫苗批号的中位数为X,则X的所有可能取值为1,2,3,4,5;
$P({X=1})=\frac{1+C_3^2•4}{5^3}=\frac{13}{125},P({X=2})=\frac{1+C_3^2•4+C_3^1•A_3^3}{5^3}=\frac{31}{125}$,
$P({X=3})=\frac{1+C_3^2•4+C_2^1•C_2^1•A_3^3}{5^3}=\frac{37}{125},P({X=4})=\frac{1+C_3^2•4+C_3^1•A_3^3}{5^3}=\frac{31}{125}$,
$P({X=5})=\frac{1+C_3^2•4}{5^3}=\frac{13}{125}$;
所以X的分布列:
| X | 1 | 2 | 3 | 4 | 5 |
| P | $\frac{13}{125}$ | $\frac{31}{125}$ | $\frac{37}{125}$ | $\frac{31}{125}$ | $\frac{13}{125}$ |
点评 本题考查了离散型随机变量的分布列与数学期望的计算问题,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | 160 | B. | 210 | C. | 640 | D. | 850 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 8 | C. | $\frac{4}{3}$ | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com