精英家教网 > 高中数学 > 题目详情
14.某市卫生防疫部门为了控制某种病毒的传染,提供了批号分别为1,2,3,4,5的五批疫苗,供全市所辖的A,B,C三个区市民注射,每个区均能从中任选其中一个批号的疫苗接种.
(1)求三个区注射的疫苗批号中恰好有两个区相同的概率;
(2)记A,B,C三个区选择的疫苗批号的中位数为X,求 X的分布列及期望.

分析 (1)设三个区注射的疫苗批号中恰好有两个区相同记为事件A,利用相互独立事件的概率公式求概率即可;
(2)设三个区选择的疫苗批号的中位数为X,写出X的所有可能取值,计算对应的概率值,写出X的分布列,计算数学期望值.

解答 解:(1)设三个区注射的疫苗批号中恰好有两个区相同记为事件A,
则:P(A)=$\frac{C_5^2•C_3^2•A_2^2}{5^3}=\frac{12}{25}$;
(2)设三个区选择的疫苗批号的中位数为X,则X的所有可能取值为1,2,3,4,5;
$P({X=1})=\frac{1+C_3^2•4}{5^3}=\frac{13}{125},P({X=2})=\frac{1+C_3^2•4+C_3^1•A_3^3}{5^3}=\frac{31}{125}$,
$P({X=3})=\frac{1+C_3^2•4+C_2^1•C_2^1•A_3^3}{5^3}=\frac{37}{125},P({X=4})=\frac{1+C_3^2•4+C_3^1•A_3^3}{5^3}=\frac{31}{125}$,
$P({X=5})=\frac{1+C_3^2•4}{5^3}=\frac{13}{125}$;
所以X的分布列:

X12345
P$\frac{13}{125}$$\frac{31}{125}$$\frac{37}{125}$$\frac{31}{125}$$\frac{13}{125}$
X的数学期望为:$EX=1×\frac{13}{125}+2×\frac{31}{125}+3×\frac{37}{125}+4×\frac{31}{125}+5×\frac{13}{125}=3$.

点评 本题考查了离散型随机变量的分布列与数学期望的计算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.等比数列{an}的前5项的和S5=10,前10项的和S10=50,则它的前20项的和S20=(  )
A.160B.210C.640D.850

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.平面直角坐标系xOy中,过椭圆M:$\frac{x^2}{b^2}+\frac{y^2}{a^2}$=1(a>b>0)焦点的直线x+y-2$\sqrt{2}$=0交M于P,Q两点,G为PQ的中点,且OG的斜率为9.
(Ⅰ)求M的方程;
(Ⅱ)A、B是M的左、右顶点,C、D是M上的两点,若AC⊥BD,求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知△ABC内角A,B,C的对边分别为a,b,c,且满足2acosA=c•cosB+b•cosC,其外接圆的半径R=2.
(1)求角A的大小;
(2)若b2+c2=18,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知抛物线C:y2=4x的焦点为F,准线为l,点A∈l,点B∈C,若$\overrightarrow{FA}=-3\overrightarrow{FB}$,则|FB|=(  )
A.4B.8C.$\frac{4}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,椭圆C1=$\frac{x^2}{a^2}+\frac{y^2}{b^2}$1(a>b>0)上任意一点到点P(-1,0)的最小距离为1,且椭圆C的离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)若直线l与椭圆C交于点M、N,且△MON的面积为$\sqrt{3}$,问|OM|2+|ON|2是否为定值?若是,求出该定值,并求出sin∠MON的最小值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=1,|$\overrightarrow{c}$|=$\sqrt{3}$,且$\overrightarrow{a}$•$\overrightarrow{b}$=-1,则$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow{b}$•$\overrightarrow{c}$的最大值是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在等差数列{an}中,a3,a15是方程x2-6x-10=0的根,则S17的值是(  )
A.41B.51C.61D.68

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x,y∈R,m+n=7,f(x)=|x-1|-|x+1|.
(1)解不等式f(x)≥(m+n)x;
(2)设max{a,b}=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,求F=max{|x2-4y+m|,|y2-2x+n|}的最小值.

查看答案和解析>>

同步练习册答案