精英家教网 > 高中数学 > 题目详情
6.直线x=2被圆(x-1)2+y2=4所截得的弦长是(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.2D.4

分析 由圆的方程,得到圆心与半径,求得圆心到直线的距离,利用勾股定理求解弦长.

解答 解:∵(x-1)2+y2=4,∴圆心为:(1,0),半径为:2
圆心到直线的距离为:d=1,
∴直线x=2被圆(x-1)2+y2=4所截得的弦长是2$\sqrt{4-1}$=2$\sqrt{3}$,
故选B.

点评 本题主要考查直与圆的位置关系及其方程的应用,是常考题型,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若角α是锐角,则sinα+cosα+$\frac{2\sqrt{2}}{sin(α+\frac{π}{4})}$的最小值是3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,已知$\sqrt{3}$a=2csinA.
(1)求角C的值;
(2)若c=$\sqrt{13}$,且S△ABC=3$\sqrt{3}$,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知sinθ+cosθ=$\frac{1}{2}$,则sin(π-2θ)=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知tan(α+$\frac{π}{3}$)=2,则$\frac{sin(α+\frac{4π}{3})+cos(\frac{2π}{3}-α)}{cos(\frac{π}{6}-α)-sin(α+\frac{5π}{6})}$=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=3sin(2x-$\frac{π}{3}}$)的图象为C,则下列结论中正确的序号是①②.
①图象C关于直线x=$\frac{11π}{12}$对称;
②图象C关于点(${\frac{2π}{3}$,0)对称;
③函数f(x)在区间(-$\frac{π}{12}$,$\frac{5π}{12}}$)内不是单调的函数;
④由y=3sin2x的图象向右平移$\frac{π}{3}$个单位长度可以得到图象C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图是一个四棱锥的三视图,则该几何体的体积为$\frac{40}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{e^x-e^{-x}}{e^x+e^{-x}}$(x∈R),e是自然对数的底.
(1)计算f(ln2)的值;
(2)证明函数f(x)是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设M,N分别为双曲线x2-$\frac{{y}^{2}}{9}$=1的左右焦点,若P在双曲线上,且$\overrightarrow{PM}•\overrightarrow{PN}$=0,则|$\overrightarrow{PM}$|+|$\overrightarrow{PN}$|=$2\sqrt{19}$.

查看答案和解析>>

同步练习册答案