精英家教网 > 高中数学 > 题目详情
已知f(x)=x2-4x+5.
(Ⅰ)求f(2)的值;
(Ⅱ)若f(a)=10,求a的值.
考点:二次函数的性质
专题:函数的性质及应用
分析:(Ⅰ)由f(x)=x2-4x+5,将x=2代入可得f(2)的值;
(Ⅱ)由f(a)=10,构造关于a的方程,解方程可得a的值.
解答: 解:(Ⅰ)∵f(x)=x2-4x+5,
∴f(2)=22-4×2+5=1,
(2)若f(a)=a2-4a+5=10,
则a2-4a-5=(a-5)(a+1)=0,
解得:a=-1,或a=5
点评:本题考查的知识点是二次函数求值,及二次方程的解法,难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={a+2,(a+1)2,|a|},若1∈A,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合M={x|x>2},N={x|
1
2
<log2x<2},P={x|x≤a-1}.
(1)求N∩(∁UM);
(2)若N⊆P,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),左焦点到直线x-y-2=0的距离为
3
2
2
,左焦点到左顶点的距离为
2
-1
(I)求椭圆的方程;
(Ⅱ)直线l过点M(2,0)交椭圆于A,B两点,是否存在点N(t,0),使得
AB
NA
=
BA
NB
,若存在,求出t的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+a
ex
(x∈R)(e是自然对数的底数)
(1)当a=-8时,求f(x)的极值;
(2)若f(x)在区间[-1,2]上是单调函数,求实数a的取值范围;
(3)试比较
1+12
e
+
1+22
e2
+
1+32
e3
+…+
1+n2
en
5n
4
e -
1
2
(其中n∈N*)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)证明:f(x)=x+
1
x
在(1,+∞)上是增函数.
(Ⅱ)求证:tan2α-sin2α=tan2αsin2α

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
3
x3-2x2+1,
(Ⅰ)求f(x)单调区间 
(Ⅱ)求f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2-2bx+b(a≠0).
(1)若a∈{-2,-1,2},b∈{0,1},求满足f(1)>0的概率;
(2)若a∈(0,1),b∈(-1,1),求满足f(1)>0的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x-2-x的零点个数为
 

查看答案和解析>>

同步练习册答案