| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既非充分又非必要条件 |
分析 对m分类讨论,利用两条直线相互垂直的充要条件即可得出.
解答 解:m=3时,直线l1:x-1=0,直线l2:2y-5=0,此时两条直线垂直,∴m=3.
m≠3时,直线l1:y=-$\frac{2(m+1)}{m-3}$x+$\frac{5m-7}{m-3}$,直线l2:y=-$\frac{m-3}{2}$x+$\frac{5}{2}$.
由两条直线垂直,可得:-$\frac{2(m+1)}{m-3}$×(-$\frac{m-3}{2}$)=-1,解得:m=-2.
综上可得:m=-2或3时,两条直线相互垂直.
∴p是q成立的充分不必要条件.
故选:A.
点评 本题考查了两条直线相互垂直的充要条件,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=-2x | B. | y=3x | C. | y=-3x | D. | y=2x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 14 | B. | 18 | C. | 9 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1)∪(0,1) | B. | (-1,0)∪(1,+∞) | C. | (-∞,-1)∪(-1,0) | D. | (0,1)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com