精英家教网 > 高中数学 > 题目详情
6.解关于x的不等式:$\frac{{x}^{2}+ax-2}{x-1}≤x+1$.

分析 原不等式转化为$\frac{ax-1}{x-1}$≤0,对a进行分类讨论,即可求出不等式的解集.

解答 解:$\frac{{x}^{2}+ax-2}{x-1}≤x+1$得到:$\frac{{x}^{2}+ax-2}{x-1}$-(x+1)≤0,即为$\frac{{x}^{2}+ax-2}{x-1}$-$\frac{{x}^{2}-1}{x-1}$≤0,
即为$\frac{ax-1}{x-1}$≤0,
当a=0时,$\frac{1}{x-1}$≥0,解得x>1,
当a=1时,1≤0,解集为空集,
当a<0时,即为(x-$\frac{1}{a}$)(x-1)≥0,且x≠1,
解得x≤$\frac{1}{a}$或x>1,
当a>0时,即为(x-$\frac{1}{a}$)(x-1)≤0,且x≠1,
当0<a<1时,$\frac{1}{a}$>1,解得1<x≤$\frac{1}{a}$,
当a>1时,解得$\frac{1}{a}$≤x<1,
综上所述,当a=1时,1≤0,解集为空集,
当a<0时,解集为({x|x≤$\frac{1}{a}$或x>1}
当a=0时,解集为{x|x>1},
当0<a<1时,解集为{x|1<x≤$\frac{1}{a}$},
当a=1时,解集为空集,
当a>1时,解集为{x|$\frac{1}{a}$≤x<1}.

点评 本题考查了一元二次不等式的解法以及讨论思想的运用;关键是准确分类做到不重不漏.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,则输出的S等于(  )
A.$\frac{1}{2}$B.$\frac{3}{5}$C.$\frac{5}{6}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}的前n项和为Sn,满足S4=4(a3+1),3a3=5a4
(1)求数列{an}的通项公式;
(2)求数列{|an|}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.由曲线y=$\sqrt{x}$,直线y=x所围成的封闭曲线的面积是(  )
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知F1、F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过点F1且垂直于实轴的直线与双曲线的两条渐近线分别相交于A、B两点,若坐标原点O恰为△ABF2的垂心(三角形三条高的交点),则双曲线的离心率为(  )
A.$\frac{\sqrt{21}}{3}$B.$\sqrt{2}$C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(0,1),且圆x2+y2=a2被直线x-y-$\sqrt{2}$=0截得的弦长为2
(1)求椭圆C的标准方程;
(2)已知k≠0,动直线y=k(x-1)与椭圆C的两个交点分别为A,B,问:在x轴上是否存在定点M,使得$\overrightarrow{MA}$$•\overrightarrow{MB}$为定值?若存在,试求出点M的坐标和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.焦点在x轴的椭圆,顺次连接椭圆的短轴顶点和焦点形成一边长为$\sqrt{2}$的正方形,求:
(1)椭圆的标准方程;
(2)椭圆的焦点坐标、顶点坐标和离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.F是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点.过点F向C的-条渐近线引垂线,垂足为A,交另一条渐近线于点B,若3$\overrightarrow{AF}$=$\overrightarrow{FB}$,则C的心离心率是(  )
A.$\sqrt{2}$B.2C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{14}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设f(x)=(x-1)2,g(x)=x2-1.
(1)写出f[g(x)]的解析式;
(2)求函数f[g(x)]的单调区间.

查看答案和解析>>

同步练习册答案