精英家教网 > 高中数学 > 题目详情
9.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AD∥BC,侧棱PA⊥底面ABCD,且PA=AB=BC=2,AD=1.
(Ⅰ)试作出平面PAB与平面PCD的交线EP(不需要说明画法和理由);
(Ⅱ)求证:直线EP⊥平面PBC.

分析 (Ⅰ)延长BA,CD相交于点E,连接EP,则EP是平面PAB与平面PCD的交线.
(Ⅱ)由已知及平行线的性质可求AB=2,AE=2,利用勾股定理可求$PE=PB=2\sqrt{2}$,而EB=4,可得PE2+PB2=EB2,从而可证EP⊥PB,由PA⊥BC,BC⊥面PAB.可证BC⊥EP,从而可证EP⊥平面PBC.

解答 (本题满分12分)
解:(Ⅰ)∵底面ABCD是直角梯形,AB⊥AD,AD∥BC,
∴延长BA,CD相交于点E,连接EP,则EP是平面PAB与平面PCD的交线.
平面PAB与平面PCD的交线EP如图所示.
…(4分)
(Ⅱ)∵AD∥BC,BC=2,AD=1,
∴A,D是EB,EC的中点.
∵AB=2,∴AE=2. …(6分)
∵侧棱PA⊥底面ABCD,PA=2,
∴PA⊥AB,
∴$PE=PB=2\sqrt{2}$,而EB=4,
∴PE2+PB2=EB2,∴EP⊥PB. …(8分)
∵侧棱PA⊥底面ABCD,
∴PA⊥BC,
∵AB⊥AD,AD∥BC,
∴BC⊥AB,
∴BC⊥面PAB.
∵EP?面PAB,
∴BC⊥EP. …(10分)
∵BC∩PB=B,
∴EP⊥平面PBC. …(12分)

点评 本题主要考查了直线与平面垂直的判定和性质,考查了勾股定理的应用,考查了空间想象能力和推理论证能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若2sin2x+cos2x=1(x≠kπ,k∈Z),则$\frac{2co{s}^{2}x+sin2x}{1+tanx}$的值为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设k是一个正整数,$(1+\frac{x}{k}{)^4}$的展开式中x3的系数为$\frac{1}{16}$,记函数y=x2与y=kx的图象所围成的阴影部分为S,任取x∈[0,4],y∈[0,16],则点(x,y)恰好落在阴影区域S内的概率是(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设等差数列{an}的前n项和为Sn,a2、a4是方程x2-x-3=0的两个根,S5=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.幂函数$f(x)=({m^2}-3m+3){x^{{m^2}-m-2}}$的图象与坐标轴没有公共点,则m的值为1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若实数x,y满足$\left\{\begin{array}{l}{x+y≥0}\\{x≤1}\\{x-2y≥0}\end{array}\right.$,则|x|+|y|的取值范围是[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若关于x的不等式3-|x-a|>x2至少有一个负数解,则实数a的取值范围是(-$\frac{13}{4}$,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.${(\sqrt{2x}+\frac{1}{x^2})^n}$展开式中只有第六项二项式系数最大,则展开式中的常数项是720.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=ex-1+x-2(e为自然对数的底数),g(x)=x2-ax-a+3,若存在实数x1,x2,使得f(x1)=g(x2)=0,且|x1-x2|≤1,则实数a的取值范围是(  )
A.[2,3]B.[1,2]C.[2,$\frac{7}{3}$]D.[$\frac{7}{3}$,3]

查看答案和解析>>

同步练习册答案