| A. | [2,3] | B. | [1,2] | C. | [2,$\frac{7}{3}$] | D. | [$\frac{7}{3}$,3] |
分析 求出函数f(x)的导数,可得f(x)递增,解得f(x)=0的解为1,由题意可得x2-ax-a+3=0在0≤x≤2有解,
即有a=$\frac{{x}^{2}+3}{x+1}$=(x+1)+$\frac{4}{x+1}$-2在0≤x≤2有解,求得(x+1)+$\frac{4}{x+1}$-2的范围,即可得到a的范围.
解答 解:函数f(x)=ex-1+x-2的导数为f′(x)=ex-1+1>0,
f(x)在R上递增,由f(1)=0,可得f(x1)=0,解得x1=1,
存在实数x1,x2,使得f(x1)=g(x2)=0.且|x1-x2|≤1,
即为g(x2)=0且|1-x2|≤1,
即x2-ax-a+3=0在0≤x≤2有解,
即有a=$\frac{{x}^{2}+3}{x+1}$=(x+1)+$\frac{4}{x+1}$-2在0≤x≤2有解,
令t=x+1(1≤t≤3),则t+$\frac{4}{t}$-2在[1,2]递减,[2,3]递增,
可得最小值为2,最大值为3,
则a的取值范围是[2,3].
故答案为:[2,3].
点评 本题考查导数的运用:求单调性和极值、最值,考查参数分离法和运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 一定是锐角三角形 | |
| B. | 一定是直角三角形 | |
| C. | 一定是钝角三角形 | |
| D. | 可能是锐角三角形也可能是钝角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,4] | B. | [4,+∞) | C. | [4,5) | D. | [4,5] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com