精英家教网 > 高中数学 > 题目详情
7.求证:sin(360°-α)=-sinα.

分析 已知等式左边利用诱导公式及正弦函数为奇函数化简,得到结果,与右边相等,得证.

解答 证明:已知等式左边=sin(-α)=-sinα=右边,
则sin(360°-α)=-sinα.

点评 此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{2}{x}$+alnx-2(a∈R).
(1)当a=2时,求f(x)的单调区间;
(2)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)与x轴有两个不同的交点,求b的取值范围;
(3)若函数f(x)在区间[e-1,e]上的最小值为-2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.过抛物线y2=2px(p>0)的焦点F做倾斜角为θ直线AB,设A(x1,y1),B(x2,y2).求证:
(1)y2y1=-P2,x2x1=$\frac{p^2}{4}$;
(2)|AB|=$\frac{2p}{sin^2θ}$=x1+x2+P;
(3)|AF|=$\frac{p}{1-cosθ}$=x1+$\frac{p}{2}$,|BF|=$\frac{p}{1+cosθ}$=x2+$\frac{p}{2}$;
(4)$\frac{1}{IAFI}$+$\frac{1}{IBFI}$=$\frac{2}{p}$;
(5)以AB为直径的圆与准线相切;
(6)点A、B在准线上的射影分别为M、N,则∠MFN=90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线y2=4x,直线y=x-1,求直线与抛物线的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.平面直角坐标系中,圆C1参数方程$\left\{\begin{array}{l}{x=2cosα}\\{y=1+2sinα}\end{array}\right.$(α为参数),椭圆C2的极坐标方程:${ρ}^{2}=\frac{2}{co{s}^{2}θ+2si{n}^{2}θ}$.
(1)求椭圆C2直角坐标方程,若A(x,y)是椭圆C2上任意一点,求x+$\sqrt{2}y$取值范围;
(2)若P是椭圆C2上任意一点,Q为圆C1上任意一点,求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知实数a是常数,f(x)=(x+a)2-3ln(x+1)-5,当x>0时,f(x)是增函数,求a的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知i为虚数单位,zi=2i-z,则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在半径为2的球面上有不同的四点A,B,C,D,若AB=AC=AD=2,则平面BCD被球所截得图形的面积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若函数f(x)=x2+2a|x-2|,数列{an}的前n项和为Sn,满足Sn=f(n).
(1)若数列{an}为递增数列,求实数a的取值范围;
(2)当a=$\frac{1}{2}$时,设数列{bn}满足:bn=2${\;}^{{a}_{n}}$,记{bn}的前n项和Tn,求满足不等式Tn>2015的最小整数n;
(3)当函数f(x)为偶函数时,对任意给定的k(k∈N*),是否存在自然数p,r(k<p<r)使$\frac{1}{{a}_{k}}$,$\frac{1}{{a}_{p}}$,$\frac{1}{{a}_{r}}$成等差数列?若不存在,说明理由;若存在,请找出p,r与k的一组关系式.

查看答案和解析>>

同步练习册答案