精英家教网 > 高中数学 > 题目详情
四面体P-ABC中,M为棱AB的中点,则PB与CM所成角的余弦值为(    )
A.B.C.D.
C


中点,连接。因为分别是中点,所以,则所成角。因为是正四面体,设边长为1,则。从而在可得,故选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知三棱柱,底面为正三角形,平面,,中点.
(Ⅰ)求证:平面
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥中,⊥底面

(1)求证:⊥平面
(2)求二面角的平面角的余弦值;
(3)求点到平面的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分) 如图所示,在等腰梯形中,中点.将沿折起至,使得平面平面分别为的中点.
(Ⅰ) 求证:;
(Ⅱ) 求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°。
(1)证明:平面ADB⊥平面BDC;
(2 )设BD=1,求三棱锥D—ABC的表面积。
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四边形为矩形,平面,平面于点,且点上.
(Ⅰ)求证:
(Ⅱ)求四棱锥的体积;
(Ⅲ)设点在线段上,且
试在线段上确定一点,使得平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(9分)如图,ABCD是正方形,O是正方形的中心,PO底面ABCDEPC的中点.
(1)求证:PA∥平面BDE  
(2)求证:平面PAC平面BDE
(3)若,求三棱锥P-BDE的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分,其中第1小题6分,第2小题6分)
在直三棱柱中,,且异面直线所成的角等于,设
(1)求的值;
(2)求直线到平面的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图4,点P在长方体ABCDA1B1C1D1的面对角线BC1(线段BC1)上运动,给出下列四个命题:
①直线AD与直线B1P为异面直线;
②恒有A1P∥面ACD1
③三棱锥AD1PC的体积为定值;
④当且仅当长方体各棱长都相等时,面PDB1⊥面ACD1
其中所有正确命题的序号是         
 

查看答案和解析>>

同步练习册答案