精英家教网 > 高中数学 > 题目详情
已知y=f(x)是偶函数,当x>0时f(x)=(x-1)2,若当x∈[-2,-
1
2
]时,n≤f(x)≤m恒成立,则m-n的最小值为(  )
A、
1
3
B、
1
2
C、
3
4
D、1
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:由题意求出函数在x<0时的解析式,得到函数在x∈[-2,-
1
2
]时的值域,即可得到m,n的范围,则答案可求.
解答: 解:设x<0,则-x>0,
有f(-x)=(-x-1)2=(x+1)2
原函数是偶函数,故有f(x)=f(-x)=(x+1)2
即x<0时,f(x)=(x+1)2
该函数在[-2,-
1
2
]上的最大值为1,最小值为0,
依题意n≤f(x)≤m恒成立,
∴n≥0,m≤1,
即m-n≥1.
故选:D.
点评:本题考查了函数奇偶性的性质,考查了函数解析式的求法,体现了数学值思想方法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过点(2,-2),(-2,6)的直线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列不等式中:
①x2+3x-2>0和x2+3x-4>0;
②4x+
5
x+3
>8+
5
x+3
和4x>8;
③4x+
5
x-3
>8+
5
x-3
和4x>8;
x+3
2-x
>0和(x+3)(2-x)>0;
不等价的是(  )
A、①和②B、①和③
C、②和③D、②、③和④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)为奇函数,且满足f(x+4)=f(x),当x∈[0,1]时,f(x)=2x-1.
(1)求f(x)在[-1,0)上的解析式;
(2)求f(log
1
2
24)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角△ABC中,∠B=
π
6
,c=
3
,则BC的长度为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,cos2A=2cos2A-2cosA.
(Ⅰ)求角A 的大小;  
(Ⅱ)若a=3,b=2c,求S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中正确的是(  )
A、频率是概率的近似值,随着试验次数增加,频率会越来越接近概率
B、要从1002名学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2名学生,这样对被剔除者不公平
C、根据样本估计总体,其误差与所选取的样本容量无关
D、数据2,3,4,5的方差是数据4,6,8,10的方差的一半

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=i(1-i)(i为虚数单位),则复数z在复平面上对应的点位于第
 
象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bcosx+sinx-1满足f(
π
6
)=5,则f(-
π
6
)的值是
 

查看答案和解析>>

同步练习册答案