11£®ÒÑÖªº¯Êý$f£¨x£©=\left\{\begin{array}{l}{log_{\frac{1}{3}}}x£¬x£¾0\\{2^x}£¬x¡Ü0\end{array}\right.$£¬Èô$f£¨a£©£¾\frac{1}{2}$£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨{0£¬\frac{{\sqrt{3}}}{3}}£©$B£®£¨-1£¬0]C£®$£¨{-1£¬\frac{{\sqrt{3}}}{3}}£©$D£®$£¨{-1£¬0}£©¡È£¨{0£¬\frac{{\sqrt{3}}}{3}}£©$

·ÖÎö ÀûÓ÷ֶκ¯Êý£¬½áºÏÒÑÖªÌõ¼þ£¬Áгö²»µÈʽ×飬ת»¯Çó½â¼´¿É£®

½â´ð ½â£ºÓÉÌâÒ⣬µÃ$\left\{\begin{array}{l}{log_{\frac{1}{3}}}x£¾\frac{1}{2}\\ x£¾0\end{array}\right.$»ò$\left\{\begin{array}{l}{2^x}£¾\frac{1}{2}\\ x¡Ü0\end{array}\right.$£¬½âµÃ$0£¼a£¼\frac{{\sqrt{3}}}{3}$»ò-1£¼a¡Ü0£¬
¼´ÊµÊýaµÄȡֵ·¶Î§Îª$£¨{-1£¬\frac{{\sqrt{3}}}{3}}£©$£¬
¹ÊÑ¡C£®

µãÆÀ ±¾Ì⿼²é·Ö¶Îº¯ÊýµÄÓ¦Ó㬲»µÈʽ×éµÄÇó½â£¬¿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®¶àÏîʽ$£¨{4{x^2}-2}£©{£¨{1+\frac{1}{x^2}}£©^5}$Õ¹¿ªÊ½Öеij£ÊýÏîÊÇ18£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªº¯Êý$f£¨x£©=sin£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬|¦Õ|£¼\frac{¦Ð}{2}£©$µÄ×îСÕýÖÜÆÚΪ¦Ð£¬f£¨x£©µÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»ºó¹ØÓÚÖ±Ïßx=0¶Ô³Æ£¬Ôò$f£¨x+\frac{¦Ð}{12}£©+f£¨x-\frac{¦Ð}{6}£©$µÄµ¥µ÷µÝÔöÇø¼äΪ£¨¡¡¡¡£©
A£®[k¦Ð-$\frac{11¦Ð}{24}$£¬k¦Ð+$\frac{¦Ð}{24}$]£¨k¡ÊZ£©B£®$[k¦Ð+\frac{3¦Ð}{8}£¬k¦Ð+\frac{7¦Ð}{8}]£¨k¡ÊZ£©$
C£®$[2k¦Ð-\frac{¦Ð}{4}£¬2k¦Ð+\frac{3¦Ð}{4}]£¨k¡ÊZ£©$D£®$[2k¦Ð+\frac{3¦Ð}{4}£¬2k¦Ð+\frac{7¦Ð}{4}]£¨k¡ÊZ£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑ֪ȫ¼¯U=R£¬¼¯ºÏA={x|x2+x-6£¾0}£¬B={y|y=2x-1£¬x¡Ü2}£¬Ôò£¨∁UA£©¡ÉB=£¨¡¡¡¡£©
A£®[-3£¬3]B£®[-1£¬2]C£®[-3£¬2]D£®£¨-1£¬2]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬ÒÔÏß¶ÎF1F2Ϊֱ¾¶µÄÔ²ÓëË«ÇúÏßÔÚµÚ¶þÏóÏ޵Ľ»µãΪP£¬ÈôÖ±ÏßPF2ÓëÔ²E£º£¨x-$\frac{c}{2}$£©2+y2=$\frac{{b}^{2}}{16}$ÏàÇУ¬ÔòË«ÇúÏߵĽ¥½üÏß·½³ÌÊÇ£¨¡¡¡¡£©
A£®y=¡ÀxB£®y=¡À2xC£®y=¡À$\sqrt{3}$xD£®y=¡À$\sqrt{2}$x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®É踴Êý$z=1+\frac{1}{i^3}$£¬ÔòzµÄ¹²éÊýÊÇ£¨¡¡¡¡£©
A£®1B£®1+iC£®-1+iD£®1-i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Ë®ÊǵØÇòÉϱ¦¹óµÄ×ÊÔ´£¬ÓÉÓÚ¼Û¸ñ±È½Ï±ãÒËÔںܶ಻ȱˮµÄ³ÇÊоÓÃñ¾­³£ÎÞ½ÚÖÆµÄʹÓÃË®×ÊÔ´Ôì³ÉÑÏÖØµÄ×ÊÔ´ÀË·Ñ£®Ä³ÊÐÕþ¸®ÎªÁËÌᳫµÍ̼»·±£µÄÉú»îÀíÄî¹ÄÀø¾ÓÃñ½ÚÔ¼ÓÃË®£¬¼Æ»®µ÷Õû¾ÓÃñÉú»îÓÃË®ÊÕ·Ñ·½°¸£¬ÄâÈ·¶¨Ò»¸öºÏÀíµÄÔÂÓÃË®Á¿±ê×¼x£¨¶Ö£©£¬Ò»Î»¾ÓÃñµÄÔÂÓÃË®Á¿²»³¬¹ýxµÄ²¿·Ö°´Æ½¼ÛÊÕ·Ñ£¬³¬³öxµÄ²¿·Ö°´Òé¼ÛÊÕ·Ñ£®ÎªÁËÁ˽â¾ÓÃñÓÃË®Çé¿ö£¬Í¨¹ý³éÑù£¬»ñµÃÁËijÄê100λ¾ÓÃñÿÈ˵ÄÔ¾ùÓÃË®Á¿£¨µ¥Î»£º¶Ö£©£¬½«Êý¾Ý°´ÕÕ[0£¬0.5£©£¬[0.5£¬1£©£¬[1£¬1.5£©£¬¡­£¬[4£¬4.5£©·Ö³É9×飬֯³ÉÁËÈçͼËùʾµÄƵÂÊ·Ö²¼Ö±·½Í¼£®
£¨1£©ÈôÈ«ÊоÓÃñÖÐÔ¾ùÓÃË®Á¿²»µÍÓÚ3¶ÖµÄÈËÊýΪ3.6Íò£¬ÊÔ¹À¼ÆÈ«ÊÐÓжàÉÙ¾ÓÃñ£¿²¢ËµÃ÷ÀíÓÉ£»
£¨2£©Èô¸ÃÊÐÕþ¸®Äâ²ÉÈ¡·Ö²ã³éÑùµÄ·½·¨ÔÚÓÃË®Á¿¶ÖÊýΪ[1£¬1.5£©ºÍ[1.5£¬2£©Ö®¼äѡȡ7»§¾ÓÃñ×÷ΪÒé¼ÛË®·Ñ¼Û¸ñÌýÖ¤»áµÄ´ú±í£¬²¢¾ö¶¨»áºó´ÓÕâ7»§¼ÒÍ¥Öа´³éÇ©·½Ê½Ñ¡³ö4»§°ä·¢¡°µÍ̼»·±£¼ÒÍ¥¡±½±£¬ÉèXΪÓÃË®Á¿¶ÖÊýÔÚ[1£¬1.5£©ÖеĻñ½±µÄ¼ÒÍ¥Êý£¬YΪÓÃË®Á¿¶ÖÊýÔÚ[1.5£¬2£©ÖеĻñ½±¼ÒÍ¥Êý£¬¼ÇËæ»ú±äÁ¿Z=|X-Y|£¬ÇóZµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖª$f£¨x£©=\left\{\begin{array}{l}£¨3-a£©x-a£¬x£¼1\\{log_a}x£¬x¡Ý1\end{array}\right.$ÊÇ£¨-¡Þ£¬+¡Þ£©ÉϵÄÔöº¯Êý£¬ÄÇôʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨1£¬+¡Þ£©B£®£¨1£¬3£©C£®£¨0£¬1£©¡È£¨1£¬3£©D£®$[\frac{3}{2}£¬3£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®¸´Êýz=£¨1+2i£©2£¬ÆäÖÐiΪÐéÊýµ¥Î»£¬ÔòzµÄʵ²¿Îª-3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸