精英家教网 > 高中数学 > 题目详情
5.设α是第三象限角,P(x,-4)是其终边上一点,且cosα=$\frac{x}{5}$,则x=-3,tanα=$\frac{4}{3}$,$\frac{cosα-sinα}{cosα+sinα}$=-$\frac{1}{7}$.

分析 由条件利用任意角的三角函数的定义,求得x的值,可得tanα的值,再利用$\frac{cosα-sinα}{cosα+sinα}$=$\frac{1-tanα}{1+tanα}$求得结论.

解答 解:∵α是第三象限角,P(x,-4)是其终边上一点,∴x<0,
∵cosα=$\frac{x}{5}$=$\frac{x}{\sqrt{{x}^{2}+16}}$,∴x=-3,∴tanα=$\frac{y}{x}$=$\frac{4}{3}$,
∴$\frac{cosα-sinα}{cosα+sinα}$=$\frac{1-tanα}{1+tanα}$=-$\frac{1}{7}$,
故答案为:-3,$\frac{4}{3}$,-$\frac{1}{7}$.

点评 本题主要考查任意角的三角函数的定义,同角三角函数关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.O为平面上的定点,A、B、C是平面上不共线的三点,若($\overrightarrow{OA}$-$\overrightarrow{OC}$)•($\overrightarrow{OA}$+$\overrightarrow{OC}$-2$\overrightarrow{OB}$)=0,则△ABC是(  )
A.以AB为底边的等腰三角形B.以AB为斜边的直角三角形
C.以AC为底边的等腰三角形D.以AC为斜边的直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中a,b,c分别为角A,B,C的对边,且$\sqrt{3}$bcosA=asinB
(Ⅰ)求角A
(Ⅱ)若a=2$\sqrt{3}$,求bc的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a=0.61.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是(  )
A.a<b<cB.b<c<aC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知loga2=m,loga3=n,则a2m+n=12,用m,n表示log46为$\frac{m+n}{2m}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的半焦距为c,且b=c,椭圆的上顶点到右顶点的距离为2$\sqrt{3}$.
(1)求椭圆的方程;
(2)已知点F是椭圆的右焦点,C(m,0)是线段OF上一个动点(O为坐标原点),是否存在过点F且与x轴不垂直的直线l与椭圆交于A,B两点,使得AC|=|BC|,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若命题“?x0∈R使得${x_0}^2+a{x_0}+a+3<0$”为假命题,则实数a的取值范围是(  )
A.[-6,2]B.[-6,-2]C.[-2,6]D.$[{2-\sqrt{7}{,_{\;}}2+\sqrt{7}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=x2+ax-$\frac{b^2}{4}+1{,_{\;}}$g(x)=2x,
(1)若A={t∈N*|t2-10t+9≤0},当a,b∈A时,求f(x)>g(x)恒成立的概率;
(2)若B=[0,9],当a,b∈B时,求f(x)>g(x)恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知x,y为正实数,且x+2y=1,则$\sqrt{xy}$的最大值是$\frac{\sqrt{2}}{4}$,$\frac{2x+y}{xy}$的最小值是9.

查看答案和解析>>

同步练习册答案