分析 由条件利用任意角的三角函数的定义,求得x的值,可得tanα的值,再利用$\frac{cosα-sinα}{cosα+sinα}$=$\frac{1-tanα}{1+tanα}$求得结论.
解答 解:∵α是第三象限角,P(x,-4)是其终边上一点,∴x<0,
∵cosα=$\frac{x}{5}$=$\frac{x}{\sqrt{{x}^{2}+16}}$,∴x=-3,∴tanα=$\frac{y}{x}$=$\frac{4}{3}$,
∴$\frac{cosα-sinα}{cosα+sinα}$=$\frac{1-tanα}{1+tanα}$=-$\frac{1}{7}$,
故答案为:-3,$\frac{4}{3}$,-$\frac{1}{7}$.
点评 本题主要考查任意角的三角函数的定义,同角三角函数关系,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 以AB为底边的等腰三角形 | B. | 以AB为斜边的直角三角形 | ||
| C. | 以AC为底边的等腰三角形 | D. | 以AC为斜边的直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | b<c<a | C. | b<a<c | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-6,2] | B. | [-6,-2] | C. | [-2,6] | D. | $[{2-\sqrt{7}{,_{\;}}2+\sqrt{7}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com