精英家教网 > 高中数学 > 题目详情
16.已知直线经过两条直线l1:3x+4y-5=0和l2:2x-3y+8=0的交点M.
(1)若直线l与直线2x+y+2=0垂直,求直线l的方程;
(2)若直线l′与直线l1关于点(1,-1)对称,求直线l′的方程.

分析 (1)联立$\left\{\begin{array}{l}{3x+4y-5=0}\\{2x-3y+8=0}\end{array}\right.$,解得M(-1,2).直线l与直线2x+y+2=0垂直,可设直线l的方程为:x-2y+m=0,把M代入解得m即可得出.
(2)设直线l′上的任意一点P(x,y),点P关于点(1,-1)的对称点Q(2-x,-2-y)在直线l1上,代入即可得出.

解答 解:(1)联立$\left\{\begin{array}{l}{3x+4y-5=0}\\{2x-3y+8=0}\end{array}\right.$,解得M(-1,2).
∵直线l与直线2x+y+2=0垂直,∴可设直线l的方程为:x-2y+m=0,把M代入可得;-1-4+m=0,解得m=5.
∴直线l的方程为x-2y+5=0.
(2)设直线l′上的任意一点P(x,y),点P关于点(1,-1)的对称点Q(2-x,-2-y)在直线l1上,
∴3(2-x)+4(-2-y)-5=0,化为:3x+4y+7=0.

点评 本题考查了中点坐标公式、相互垂直的直线斜率之间的关系、直线的交点,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在△ABC中,B=60°,C=45°,BC=8,D为BC上一点,AD=4(3$-\sqrt{3}$),$\overrightarrow{BD}$=$λ\overrightarrow{BC}$,则λ的值为(  )
A.$\frac{\sqrt{6}-\sqrt{2}}{2}$B.$\frac{\sqrt{6}+\sqrt{2}}{4}$C.$\frac{\sqrt{3}-1}{2}$D.$\frac{2-\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.比较${∫}_{0}^{\frac{π}{2}}$sin5xdx与${∫}_{0}^{\frac{π}{2}}$sinxdx的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,且c-a(cosB+$\frac{\sqrt{3}}{3}$sinB)=0.
(1)求角A的大小;
(2)若a=$\sqrt{3}$,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|=2$\sqrt{3}$,若平面向量$\overrightarrow{c}$满足|$\overrightarrow{c}$-$\overrightarrow{a}$|=|$\overrightarrow{c}-\overrightarrow{b}$|.则$\overrightarrow{a}$与$\overrightarrow{c}$的夹角(锐角)为$\frac{π}{6}$;若非零平面向量$\overrightarrow{c}$-$\overrightarrow{a}$与$\overrightarrow{c}$-$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,则|$\overrightarrow{c}$|的取值范围是($2\sqrt{3}$,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若${C}_{n}^{0}$+$\frac{1}{2}$${C}_{n}^{1}$+$\frac{1}{3}$${C}_{n}^{2}$+…+$\frac{1}{n+1}$${C}_{n}^{n}$=$\frac{31}{n+1}$,求(1-2x)2n的展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an},其通项公式an=nsin2$\frac{n}{2}$π-ncos2$\frac{n}{2}$π,其前n项和为Sn,求S2014+S2015的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.我县某种蔬菜从二月一日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/102kg)与上市时间t(单位:天)的数据如下表:
时间t50110250
种植成本Q150108150
(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系.Q=at+b,Q=at2+bt+c,Q=a•bt,Q=a•logbt.
(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.给定两个命题P:对任意实数x都有ax2+ax+1>0恒成立;Q:关于x的方程x2-x+a=0有实数根;
(1)“a=0”是P的什么条件?
(2)如果P与Q中有且仅有一个为真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案