精英家教网 > 高中数学 > 题目详情

在如图所示的几何体中,四边形是等腰梯形,.在梯形中,,且⊥平面

(1)求证:
(2)若二面角,求的长.

(1)证明:见解析;(2)的长为

解析试题分析:(1)在中,应用余弦定理得,从而得到
再利用⊥平面平面

⊥平面平面得到
(2)建立空间直角坐标系,利用“空间向量方法”得到,解得
试题解析:(1)证明:在中,
所以,由勾股定理知所以 .   2分
又因为 ⊥平面平面
所以 .                                           4分
又因为 所以 ⊥平面,又平面
所以 .                                           6分

(2)因为⊥平面,又由(1)知,以为原点,建立如图所示的空间直角坐标系 .
,则,,,
.            8分
设平面的法向量为,则  所以
.所以.                    9分
又平面的法向量                    10分
所以, 解得 .          11分
所以的长为.                           12分
考点:直线与平面垂直,余弦定理,空间向量的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面,底面是直角梯形,,且的中点.

(1)设与平面所成的角为,二面角的大小为,求证:
(2)在线段上是否存在一点(与两点不重合),使得∥平面? 若存在,求的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,将边长为2的正方形ABCD沿对角线BD折成一个直二面角,且EA⊥平面ABD,AE=.

(1)若,求证:AB∥平面CDE;
(2)求实数的值,使得二面角AECD的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,直三棱柱ABCA1B1C1中,D、E分别是AB、BB1的中点,AA1=AC=CB=AB.

(1)证明:BC1∥平面A1CD;
(2)求二面角DA1CE的正弦值..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°的角.

求证:(1)CM∥平面PAD.
(2)平面PAB⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图几何体中,四边形为矩形,.

(1)若的中点,证明:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知直三棱柱ABC-A1B1C1中,AC⊥BC,D为AB的中点,AC=BC=BB1.

求证:(1)BC1⊥AB1.
(2)BC1∥平面CA1D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四棱锥PABCD的底面ABCD为一直角梯形,其中BAADCDADCDAD=2ABPA⊥底面ABCDEPC的中点.
 
(1)求证:BE∥平面PAD
(2)若BE⊥平面PCD,求平面EBD与平面BDC夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正三棱柱ABC-A1B1C1中,AB=2,AA1,点DAC的中点,点E在线段AA1上.

(1)当AEEA1=1∶2时,求证DEBC1
(2)是否存在点E,使二面角D-BE-A等于60°,若存在求AE的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案