精英家教网 > 高中数学 > 题目详情
8.已知抛物线y2=2x上两点A,B满足A在x轴上方,B在x轴下方,O是坐标原点且$\overrightarrow{OA}$•$\overrightarrow{OB}=3$,则线段AB中点M的坐标满足方程(  )
A.y2=2x-12B.y2=2x+4C.y2=x+1D.y2=x-3

分析 根据条件可设$A(\frac{{{y}_{1}}^{2}}{2},{y}_{1}),B(\frac{{{y}_{2}}^{2}}{2},{y}_{2}),M(x,y)$,从而由$\overrightarrow{OA}•\overrightarrow{OB}=3$得出$\frac{({y}_{1}{y}_{2})^{2}}{4}+{y}_{1}{y}_{2}=3$,从而可解出y1y2=-6,从而有$\left\{\begin{array}{l}{x=(\frac{{y}_{1}+{y}_{2}}{2})+3}\\{y=\frac{{y}_{1}+{y}_{2}}{2}}\end{array}\right.$,这样即可求出点M的坐标满足的方程.

解答 解:设$A(\frac{{{y}_{1}}^{2}}{2},{y}_{1}),B(\frac{{{y}_{2}}^{2}}{2},{y}_{2})$,M(x,y),则:
$\overrightarrow{OA}•\overrightarrow{OB}=\frac{{{y}_{1}}^{2}{{y}_{2}}^{2}}{4}+{y}_{1}{y}_{2}=3$;
即$({y}_{1}{y}_{2})^{2}+4{y}_{1}{y}_{2}-12=0$;
解得y1y2=-6,或2;
∵y1,y2异号;
∴y1y2=-6;
∴$\left\{\begin{array}{l}{x=\frac{{{y}_{1}}^{2}+{{y}_{2}}^{2}}{4}=\frac{({y}_{1}+{y}_{2})^{2}}{4}+3}\\{y=\frac{{y}_{1}+{y}_{2}}{2}}\end{array}\right.$;
∴x=y2+3,即y2=x-3.
故选:D.

点评 考查抛物线上点的坐标的设法,数量积的坐标运算,一元二次方程的解法,以及中点坐标公式,完全平方公式的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.某中学高一、高二、高三三个年级共有学生3000人,采用分层抽样的方法从全体学生中抽取一个容量为60的样本,已知高一年级学生为1 200人,则该年级抽取的学生数为(  )
A.20B.30C.24D.25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.一个四棱锥的三视图如图所示,其中侧视图为正三角形,则该四棱锥的体积是$\frac{\sqrt{3}}{6}$,该四棱锥的最长棱的棱长为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的一条渐近线为$\sqrt{3}$x+y=0,则a=(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△ABC中,角A,B,C的对边分别是a,b,c,已知a=b,c2=2b2(1-sinC),则C=(  )
A.$\frac{3π}{4}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合A=(-1,0,1},B={0,a,a2},若A=B,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.解不等式
(1)x2-3x-4<0           
(2)x2-x-6>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设x,y满足不等式组$\left\{\begin{array}{l}{x+y-1≤0}\\{x≥0}\\{y≥0}\end{array}\right.$,则z=2x+y的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义一种运算:a?$b=\left\{\begin{array}{l}{a}&{a≥b}\\{b}&{a<b}\end{array}\right.$已知函数f(x)=2x?(3-x),那么函数y=f(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案