精英家教网 > 高中数学 > 题目详情
8.如果f(x)=atanx+bsin3x-5,并且f(1)=2,那么f(-1)=-12.

分析 直接利用函数的奇偶性求解函数值即可.

解答 解:f(x)=atanx+bsin3x-5,f(1)=2,
可得:atan1+bsin31-5=2,即atan1+bsin31=7
f(-1)=-atan1-bsin31-5=-7-5=-12.
故答案为:-12;

点评 本题考查函数的奇偶性的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点是(-$\sqrt{3}$,0)、($\sqrt{3}$,0),且椭圆经过点($\sqrt{2}$,$\frac{\sqrt{2}}{2}$).
(1)求椭圆C的方程;
(2)设P(0,4),M、N是椭圆C上关于y轴对称的任意两个不同的点,连接PN交椭圆C于另一点E,证明:直线ME与y轴相交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点M($\sqrt{3}$,2)是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的一点,MF2垂直于x轴,F1,F2分别为椭圆的左、右焦点,A1,A2分别为椭圆的左、右顶点
(1)求椭圆C的标准方程;
(2)动直线l:x=my+1与椭圆C交于P、Q两点,直线A1P与直线A2Q交于点S,当直线l变化时,点S是否在一条定直线上?若是,求出定直线方程;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知O是坐标原点,A(1,-1),B(1,-2),C(1,0),P(x,y)是平面内任一点,不等式组$\left\{\begin{array}{l}\overrightarrow{OP}•\overrightarrow{OA}≥0\\ \overrightarrow{OP}•\overrightarrow{OB}≤0\\ \overrightarrow{OP}•\overrightarrow{OC}≤1\end{array}\right.$解集表示的平面区域为E,若?(x,y)∈E,都有2x+y≤S,则S的最小值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a>0,b>0,若3是9a与27b的等比中项,则$\frac{3}{a}$+$\frac{2}{b}$的最小值为(  )
A.25B.24C.36D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某三棱锥的侧视图,俯视图如图所示,则该三棱锥正视图的面积是(  )
A.2B.3C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某几何体的三视图如图所示,则该几何体的表面积是92

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.图中所示算法流程图的功能是(  )
A.求a、b、c三数的最大数B.求a、b、c三数的最小数
C.将a、b、c三数由大到小排列D.将a、b、c三数由小到大排列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,若∠A=60°,∠B=45°,BC=3$\sqrt{2}$,则AC等于(  )
A.4$\sqrt{3}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

同步练习册答案