精英家教网 > 高中数学 > 题目详情
12.如图,四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为梯形,AD∥BC,BC=6,PA=AD=CD=2,E为BC上一点且BE=$\frac{2}{3}$BC,PB⊥AE.
(1)求证:AB⊥PE;
(2)求二面角B-PC-D的余弦值.

分析 (1)推导出PA⊥AE,AE⊥AB.由此能证明AB⊥PE.
(2)以A为坐标原点,建立空间直角坐标系A-xyz,利用向量法能求出二面角B-PC-D的余弦值.

解答 证明:(1)∵PA⊥平面ABCD,AE?平面ABCD,
∴PA⊥AE,
又∵PB⊥AE,PB∩PA=P,
∴AE⊥平面PAB,又∵AB?平面PAB,
∴AE⊥AB.
又∵PA⊥AB,PA∩AE=A,
∴AB⊥平面PAE,
又∵PE?平面PAE,
∴AB⊥PE.…(6分)
解:(2)以A为坐标原点,建立如图所示的空间直角坐标系A-xyz,
则B(2$\sqrt{3}$,0,0),P(0,0,2),C(-$\sqrt{3}$,3,0),D(-$\sqrt{3}$,1,0),
∴$\overrightarrow{BC}$=(-3$\sqrt{3}$,3,0),$\overrightarrow{PC}$=(-$\sqrt{3}$,3,-2),$\overrightarrow{DC}$=(0,2,0).
设平面PBC的一个法向量$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BC}=-3\sqrt{3}x+3y=0}\\{\overrightarrow{m}•\overrightarrow{PC}=-\sqrt{3}x+y-2z=0}\end{array}\right.$,令x=1,得$\overrightarrow{m}$=(1,$\sqrt{3}$,$\sqrt{3}$).
同理可求平面PCD的一个法向量$\overrightarrow{n}$=(2,0,-$\sqrt{3}$).
∴cos?m,n>=$\frac{m•n}{|m||n|}$=$\frac{-1}{\sqrt{7}•\sqrt{7}}$=-$\frac{1}{7}$.
∵二面角B-PC-D为钝二面角,
∴二面角B-PC-D的余弦值为-$\frac{1}{7}$.…(12分)

点评 本题考查异面直线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{lnx}{x}$.
(1)当e≤x≤e2时,求函数f(x)的最小值;
(2)已知函数g(x)=2x-$\frac{ax(x-1)}{lnx}$,且f(x)g(x)≤0恒成立,求实数a的值;
(3)某同学发现:存在正实数m、n(m<n),使mn=nm,试问:他的发现是否正确?若不正确,则请说明理由;若正确,则请直接写出m的取值范围,而不需要解答过程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第4个图案中需用黑色瓷砖24块,则按此规律第n个图案中需用黑色瓷砖4(n+2)块.(用含n的代数式表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.方程1-2sin2x+2cosx-m=0有解,则实数m的范围是[-$\frac{3}{2}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{xlnx}{x-1}$,g(x)=-$\frac{1}{2}$a(x2-x-2),其中a∈R
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若对任意x>0,不等式f(x+1)>g(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x+$\frac{1}{x-a}$+$\frac{1}{x-b}$(a,b为实常数).
(Ⅰ)若a+b=0,判断函数f(x)的奇偶性,并加以证明;
(Ⅱ)记M=$\left\{\begin{array}{l}{a,b<a}\\{b,b≥a}\end{array}\right.$,A=$\frac{a+b}{2}$,求实数λ的取值范围,使得方程f(x)=$\frac{λ}{x-A}$+A在区间(M,+∞)上无解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如表是一个由n2个正数组成的数表,用aij表示第i行第j个数(i,j∈N),已知数表中第一列各数从上到下依次构成等差数列,每一行各数从左到右依次构成等比数列,且公比都相等.已知a11=1,a31+a61=9,a35=48.
(1)求an1和a4n
(2)设bn=$\frac{{{a_{4n}}}}{{({{a_{4n}}-2})({{a_{4n}}-1})}}$+(-1)n•a${\;}_{{n}_{1}}$(n∈N+),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知在等比数列{an}中,公比q≠1,a1,a3,a5是等差数列{bn}中的b2,b4,b12,则q=±2.

查看答案和解析>>

科目:高中数学 来源:2017届安徽合肥一中高三上学期月考一数学(理)试卷(解析版) 题型:选择题

已知函数)的图象恒过定点,则点的坐标是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案