精英家教网 > 高中数学 > 题目详情
6.如图,圆O:x2+y2=16内的正弦曲线y=sinx,x∈[-π,π]与x轴围成的区域记为M(图中阴影部分),随机向圆O内投一个点A,则点A落在区域M外的概率是1-$\frac{1}{4π}$.

分析 先求构成试验的全部区域为圆内的区域的面积,再利用积分知识可得正弦曲线y=sinx与x轴围成的区域记为M的面积为S=2∫0πsinxdx=-2cosx0π=4,代入几何概率的计算公式可

解答 解:构成试验的全部区域为圆内的区域,面积为16π,
正弦曲线y=sinx与x轴围成的区域记为M,面积为S=2∫0πsinxdx=-2cosx|0π=4
由几何概率的计算公式可得,随机往圆O内投一个点A,
则点A落在区域M外的概率P=1-$\frac{4}{16π}$=1-$\frac{1}{4π}$;
故答案为:$1-\frac{1}{4π}$.

点评 本题主要考查了利用积分求解曲面的面积,几何概率的计算公式的运用,属于中档试题,具有一定的综合性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知双曲线$C:\frac{x^2}{4}-{y^2}=1$的左右两个顶点是A1,A2,曲线C上的动点P,Q关于x轴对称,直线A1P与A2Q交于点M,
(1)求动点M的轨迹D的方程;
(2)点E(0,2),轨迹D上的点A,B满足$\overrightarrow{EA}=λ\overrightarrow{EB}$,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知无穷数列{an},满足an+2=|an+1-an|,n∈N*
(1)若a1=1,a2=2,求数列前10项和;
(2)若a1=1,a2=x,x∈Z,且数列{an}前2017项中有100项是0,求x的可能值;
(3)求证:在数列{an}中,存在k∈N*,使得0≤ak<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合M={x|-1≤x≤2},N={x|1-3a<x≤2a},若M∩N=M,则实数a的取值范围是(  )
A.($\frac{2}{3}$,1)B.(1,+∞)C.($\frac{2}{3}$,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.($\sqrt{x}$-$\frac{2}{x}$)8的展开式中,x的系数为(  )
A.-112B.112C.56D.-56

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知F是抛物线y2=4x的焦点,过点F且斜率为$\sqrt{3}$的直线交抛物线于A,B两点,则||FA|2-|FB|2|的值为(  )
A.$\frac{28}{3}$B.$\frac{128}{9}$C.$\frac{128}{8}\sqrt{3}$D.$\frac{28}{3}\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.对于定义在R上的函数f(x),若存在正常数a、b,使得f(x+a)≤f(x)+b对一切x∈R均成立,则称f(x)是“控制增长函数”,在以下四个函数中:①f(x)=x2+x+1; ②f(x)=$\sqrt{|x|}$; ③f(x)=sin(x2);④f(x)=x•sinx.是“控制增长函数”的有(  )
A.②③B.③④C.②③④D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设等差数列{an}的前n项和为Sn,若a4=4,则S7=28.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.《孙子算经》是我国古代重要的数学著作,约成书于四、五世纪,传本的《孙子算经》共三卷,其中下卷:“物不知数”中有如下问题:“今有物,不知其数,三三数之,剩二;五五数之,剩三;七七数之,剩二,问:物几何?”其意思为:“现有一堆物品,不知它的数目,3个3个数,剩2个,5个5个数,剩3个,7个7个数,剩2个,问这堆物品共有多少个?”试计算这堆物品至少有23个.

查看答案和解析>>

同步练习册答案